Module Structure on Effect Algebras

Simin Saidi Goraghani; Rajab Ali Borzooei

Bulletin of the Section of Logic (2020)

  • Volume: 49, Issue: 3, page 269-290
  • ISSN: 0138-0680

Abstract

top
In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some topologies on effect modules.  

How to cite

top

Simin Saidi Goraghani, and Rajab Ali Borzooei. "Module Structure on Effect Algebras." Bulletin of the Section of Logic 49.3 (2020): 269-290. <http://eudml.org/doc/296791>.

@article{SiminSaidiGoraghani2020,
abstract = {In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some topologies on effect modules.  },
author = {Simin Saidi Goraghani, Rajab Ali Borzooei},
journal = {Bulletin of the Section of Logic},
keywords = {effect algebra; product effect algebra; effect module; topology},
language = {eng},
number = {3},
pages = {269-290},
title = {Module Structure on Effect Algebras},
url = {http://eudml.org/doc/296791},
volume = {49},
year = {2020},
}

TY - JOUR
AU - Simin Saidi Goraghani
AU - Rajab Ali Borzooei
TI - Module Structure on Effect Algebras
JO - Bulletin of the Section of Logic
PY - 2020
VL - 49
IS - 3
SP - 269
EP - 290
AB - In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some topologies on effect modules.  
LA - eng
KW - effect algebra; product effect algebra; effect module; topology
UR - http://eudml.org/doc/296791
ER -

References

top
  1. [1] M. K. Bennett, D. J. Foulis, Phi-symmetric effect algebras, Foundations of Physics, vol. 25 (1995), pp. 1699–1722, DOI: http://dx.doi.org/10.1007/BF02057883 
  2. [2] R. A. Borzooei, A. Dvurečenskij, A. H. Sharafi, Material Implications in Lattice Effect Algebras, Information Sciences, vol. 433–434 (2018), pp. 233–240, DOI: http://dx.doi.org/10.1016/j.ins.2017.12.049 
  3. [3] R. A. Borzooei, S. S. Goraghani, Free Extended BCK-Module, Iranian Journal of Mathematical Science and Informatics, vol. 10(2) (2015), pp. 29–43, DOI: http://dx.doi.org/10.7508/ijmsi.2015.02.004 
  4. [4] R. A. Borzooei, S. S. Goraghani, Free MV-modules, Journal of Intelligent and Fuzzy System, vol. 31(1) (2016), pp. 151–161, DOI: http://dx.doi.org/10.3233/IFS-162128 
  5. [5] R. A. Borzooei, N. Kohestani, G. R. Rezaei, Metrizability on (Semi)topological BL-algebra, Soft Computing, vol. 16(10) (2012), pp. 1681–1690, DOI: http://dx.doi.org/10.1007/s00500-012-0852-2 
  6. [6] R. A. Borzooei, G. R. Rezaei, N. Kohestani, On (semi)topological BL-algebra, Iranian Journal of Mathematical Science and Informatics, vol. 6(1) (2011), pp. 59–77, DOI: http://dx.doi.org/10.7508/ijmsi.2011.01.006 
  7. [7] R. A. Borzooei, O. Zahiri, Topology on BL-algebras, Fuzzy Sets and Systems, vol. 289 (2016), pp. 137–150, DOI: http://dx.doi.org/10.1016/j.fss.2014.11.014 
  8. [8] R. Cignoli, I. M. L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic-Dordrecht (2000). 
  9. [9] A. Di Nola, P. Flondor, I. Leustean, MV-modules, Journal of Algebra, vol. 267 (2003), pp. 21–40, DOI: http://dx.doi.org/10.1016/S0021-8693(03)00332-6 
  10. [10] A. Di Nola, C. Russo, Semiring and semimodules issues in MV-algebras, Communications in Algebra, vol. 41(3) (2013), pp. 1017–1048, DOI: http://dx.doi.org/10.1080/00927872.2011.610074 
  11. [11] A. Dvurečenskij, New trends in quantum structures, Kluwer Academic/Ister Science-Dordrecht/Bratislava (2000). 
  12. [12] A. Dvurečenskij, Product effect algebras, International Journal of Theoretical Physics, vol. 41(10) (2002), pp. 193–215, DOI: http://dx.doi.org/10.1023/A:1021017905403 
  13. [13] A. Dvurečenskij, States on Pseudo effect algebras and integrals, Foundations of Physics, vol. 41 (2011), pp. 1143–1162, DOI: http://dx.doi.org/10.1007/s10701-011-9537-4 
  14. [14] A. Dvurečenskij, T. Vetterlein, Pseudo effect algebras. II. Group represetation, International Journal of Theoretical Physics, vol. 40 (2001), pp. 703–726, DOI: http://dx.doi.org/10.1023/A:1004144832348 
  15. [15] F. Forouzesh, E. Eslami, A. B. Saeid, Spectral topology on MV-modules, New Mathematics and Natural Computation, vol. 11(1) (2015), pp. 13–33, DOI: http://dx.doi.org/10.1142/S1793005715500027 
  16. [16] D. J. Foulis, M. K. Bennett, Effect algebras and unsharp quantum logics, Foundations of Physics, vol. 24(10) (1994), pp. 1331–1352, DOI: http://dx.doi.org/10.1007/BF02283036 
  17. [17] S. S. Goraghani, R. A. Borzooei, Results on Prime Ideals in PMV-algebras and MV-modules, Italian Journal of Pure and Applied Mathematics, vol. 37 (2017), pp. 183–196. 
  18. [18] M. R. Rakhshani, R. A. Borzooei, G. R. Rezaei, On topological effect algebras, Italian Journal of Pure and Applied Mathematics, vol. 39 (2018), pp. 312–325. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.