From Intuitionism to Brouwer's Modal Logic
Bulletin of the Section of Logic (2020)
- Volume: 49, Issue: 4, page 343-358
- ISSN: 0138-0680
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] O. Becker, Zur Logik der Modalitäten, Jahrbuch für Philosophie und phänomenologische Forschung, vol. 11 (1930), pp. 497–548.
- [2] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001), DOI: http://dx.doi.org/10.1017/CBO9781107050884
- [3] A. Chagrov, M. Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, Oxford (1997).
- [4] G. Hughes, M. Cresswell, An Introduction to Modal Logic, Methuen and Co. Ltd., London (1968).
- [5] C. I. Lewis, C. H. Langford, Symbolic Logic, Appleton-Century-Crofts, New York (1932).
- [6] K. Matsumoto, Reduction theorem in Lewis's sentential calculi, Mathematica Japonicae, vol. 3 (1955), pp. 133–135.
- [7] J. C. C. McKinsey, A. Tarski, Some Theorems About the Sentential Calculi of Lewis and Heyting, Journal of Symbolic Logic, vol. 13(1) (1948), pp. 1–15, DOI: http://dx.doi.org/10.2307/2268135
- [8] V. V. Rybakov, A modal analog for Glivenko's theorem and its applications, Notre Dame Journal of Formal Logic, vol. 3(2) (1992), pp. 244–248, DOI: http://dx.doi.org/10.1305/ndj/1093636103
- [9] I. B. Shapirovsky, Glivenko's theorem, finite height, and local tabularity (2018), arXiv:1806.06899.
- [10] A. Wroński, J. Zygmunt, Remarks on the free pseudo-boolean algebra with one-element free-generating set, Reports on Mathematical Logic, vol. 2 (1974), pp. 77–81.