A subordination results for a class of analytic functions defined by q-differential operator
Basem Aref Frasin; Gangadharan Murugusundaramoorthy
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)
- Volume: 19, page 53-64
- ISSN: 2300-133X
Access Full Article
topAbstract
topHow to cite
topBasem Aref Frasin, and Gangadharan Murugusundaramoorthy. "A subordination results for a class of analytic functions defined by q-differential operator." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 53-64. <http://eudml.org/doc/296801>.
@article{BasemArefFrasin2020,
abstract = {In this paper, we derive several subordination results and integral means result for certain class of analytic functions defined by means of q-differential operator. Some interesting corollaries and consequences of our results are also considered.},
author = {Basem Aref Frasin, Gangadharan Murugusundaramoorthy},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {Analytic functions; Univalent functions; Subordinating factor sequence; q-difference operator; Hadamard product (or convolution)},
language = {eng},
pages = {53-64},
title = {A subordination results for a class of analytic functions defined by q-differential operator},
url = {http://eudml.org/doc/296801},
volume = {19},
year = {2020},
}
TY - JOUR
AU - Basem Aref Frasin
AU - Gangadharan Murugusundaramoorthy
TI - A subordination results for a class of analytic functions defined by q-differential operator
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 53
EP - 64
AB - In this paper, we derive several subordination results and integral means result for certain class of analytic functions defined by means of q-differential operator. Some interesting corollaries and consequences of our results are also considered.
LA - eng
KW - Analytic functions; Univalent functions; Subordinating factor sequence; q-difference operator; Hadamard product (or convolution)
UR - http://eudml.org/doc/296801
ER -
References
top- Aouf, Mohamed Kamal et al. "beta-uniformly convex and starlike functions." Proc. Pakistan Acad. Sci. 46, no. 2 (2009): 97-101.
- Araci, Serkan et al. "A certain (p, q)-derivative operator and associated divided differences." J. Inequal. Appl. 2019 (2019): Paper No. 301.
- Aral, Ali, Vijay Gupta, and Ravi P. Agarwal. Applications of q-calculus in operator theory. New York: Springer, 2013.
- Attiya, Adel A. "On some applications of a subordination theorem." J. Math. Anal. Appl. 311, no. 2 (2005): 489-494.
- Al-Oboudi, Fatima M. "On univalent functions defined by a generalized Salagean operator." Int. J. Math. Math. Sci. no. 25-28 (2004): 1429-1436.
- Frasin, Basem Aref. "Subordination results for a class of analytic functions defined by a linear operator." JIPAM. J. Inequal. Pure Appl. Math. 7 (2006): Article 4.
- Jackson, Frederick H., "On q-functions and a certain difference operator." Trans. Royal Soc. Edinb. 46 (1908): 253-281.
- Gangadharan, A., Tirunelveli Nellaiappan Shanmugam, and Hari Mohan Srivastava. "Generalized hypergeometric functions associated with k-uniformly convex functions." Comput. Math. Appl. 44, no. 12 (2002): 1515-1526.
- Goodman, Adolph W. "On uniformly convex functions." Ann. Polon. Math. 56, no. 1 (1991): 87-92.
- Goodman, Adolph W. "On uniformly starlike functions." J. Math. Anal. Appl. 155, no. 2 (1991): 364-370.
- Govindaraj, M., and Srikandan Sivasubramanian. "On a class of analytic functions related to conic domains involving q-calculus." Anal. Math. 43, no. 3 (2017): 475-487.
- Kanas, Stanisława R. and Dorina Raducanu. "Some class of analytic functions related to conic domains." Math. Slovaca 64, no. 5 (2014): 1183-1196.
- Kanas, Stanisława R., and Agnieszka Wisniowska. "Conic regions and k-uniform convexity." J. Comput. Appl. Math. 105, no. 1-2 (1999): 327-336.
- Kanas, Stanisława R., and Agnieszka Wisniowska. "Conic domains and starlike functions." Rev. Roumaine Math. Pures Appl. 45, no. 4 (2000): 647-657.
- Kanas, Stanisława R., and Hari Mohan Srivastava. "Linear operators associated with k-uniformly convex functions." Integral Transform. Spec. Funct. 9, no. 2 (2000): 121-132.
- Karahuseyin, Zeliha, Sahsene Altinkaya, and Sibel Yalçin. "On H3(1) Hankel determinant for univalent functions defined by using q−derivative operator." TJMM 9, no. 1 (2017): 25-33.
- Littlewood, John Edensor. "On Inequalities in the Theory of Functions." Proc. London Math. Soc. 23, no. 7 (2): 481-519.
- Ma, Wan Cang, and David Minda. "Uniformly convex functions." Ann. Polon. Math. 57, no. 2 (1992): 165-175.
- Rønning, Frode. "Uniformly convex functions and a corresponding class of starlike functions." Proc. Amer. Math. Soc. 118, no. 1 (1993): 189-196.
- Rønning, Frode. "On starlike functions associated with parabolic regions." Ann. Univ. Mariae Curie-Skłodowska Sect. A 45, no. 1991 (1992): 117-122.
- Salagean, Grigore Stefan. "Subclasses of univalent functions." Complex Analysis: Fifth Romanian- Finnish Seminar, Part I(Bucharest, 1981) Vol. 1013 of Lecture Notes in Mathematics, 362-372. Berlin, New York: Springer-Verlag, 1983.
- Silverman, Herb. "Univalent functions with negative coefficients." Proc. Amer. Math. Soc. 51 (1975): 109-116.
- Silverman, Herb. "A survey with open problems on univalent functions whose coefficients are negative." Rocky Mountain J. Math. 21, no. 3 (1991): 1099-1125.
- Silverman, Herb. "Integral means for univalent functions with negative coefficients." Houston J. Math. 23, no. 1 (1997): 169-174.
- Singh, Sukhjit. "A subordination theorem for spirallike functions." Int. J. Math. Math. Sci. 24, no. 7 (2000): 433-435.
- Srivastava, Hari Mohan. "Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials." Appl. Math. Inf. Sci. 5, no. 3 (2011): 390-444.
- Srivastava, Hari Mohan, and Adel A. Attiya. "Some subordination results associated with certain subclasses of analytic functions." JIPAM. J. Inequal. Pure Appl. Math. 5, no. 4 (2004): 6pp.
- Wilf, Herbert Saul. "Subordinating factor sequences for convex maps of the unitcircle." Proc. Amer. Math. Soc. 12 (1961): 689-693.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.