Nearly irreducibility of polynomials and the Newton diagrams

Mateusz Masternak

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)

  • Volume: 19, page 65-77
  • ISSN: 2300-133X

Abstract

top
Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.

How to cite

top

Mateusz Masternak. "Nearly irreducibility of polynomials and the Newton diagrams." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 65-77. <http://eudml.org/doc/296808>.

@article{MateuszMasternak2020,
abstract = {Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.},
author = {Mateusz Masternak},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {irreducibility of polynomials; Newton diagram; Newton polygon; plane algebraic curve},
language = {eng},
pages = {65-77},
title = {Nearly irreducibility of polynomials and the Newton diagrams},
url = {http://eudml.org/doc/296808},
volume = {19},
year = {2020},
}

TY - JOUR
AU - Mateusz Masternak
TI - Nearly irreducibility of polynomials and the Newton diagrams
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 65
EP - 77
AB - Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.
LA - eng
KW - irreducibility of polynomials; Newton diagram; Newton polygon; plane algebraic curve
UR - http://eudml.org/doc/296808
ER -

References

top
  1. Abhyankar, Shreeram S., and Lee A. Rubel. "Every difference polynomial has a connected zero-set." J. Indian Math. Soc. (N.S.) 43, no. 1-4 (1979): 69-78. 
  2. Ajzenberg L.A., and A.P. Južakow. Integral representations and residues in multidimentional complex analysis. , Novosibirsk: Izdat. Nauka, Sibirskoe Otdelenie, 1991. (in Russian). 
  3. Atiyah, Michael F. "Angular momentum, convex polyhedra and algebraic geometry." Proc. Edinburgh Math. Soc. (2) 26, no. 2, (1983): 121-133. 
  4. Bernstein, D.N. "The number of roots of a system of equations." Funkcional. Anal. i Priložen. 9, no. 3 (1975): 1-4. (in Russian) 
  5. Bernstein, D.N., A.G. Kušnirenko, and A.G. Hovanski˘ı. "Newton polyhedra." Uspehi Mat. Nauk 31, no. 3(189) (1976): 201-202. (in Russian) 
  6. Cassou-Noguè s, Pierrette, and Arkadiusz Płoski. "Invariants of plane curve singularities and Newton diagrams." Univ. Iagel. Acta Math. 49 (2011): 9-34. 
  7. Fulton, William. Algebraic curves. An introduction to algebraic geometry. New York-Amsterdam: W.A. Benjamin, Inc., 1969. 
  8. Hovanskiı, A.G. "Newton polyhedra, and toroidal varieties." Funkcional. Anal. i Priložen. 11, no. 4 (1977) 56-64. (in Russian) 
  9. Hovanskiı, A.G. "Newton polyhedra, and the genus of complete intersections." Funktsional. Anal. i Prilozhen. 12, no. 1, (1978): 51-61. (in Russian) 
  10. Kušnirenko, A.G. "Newton polyhedra and a number of roots of a system of k equations in k variables." Uspehi Mat. Nauk 30, no. 2 (1975): 266-267 (in Russian). 
  11. Kušnirenko, A.G. "Newton polyhedra and Bezout’s theorem." Funkcional. Anal. i Priložen. 10, no. 3 (1976): 82-83. (in Russian). 
  12. Kušnirenko, A.G. "Polyèdres de Newton et nombres de Milnor." Invent. Math. 32, no. 1 (1976): 1-31. 
  13. Masternak, Mateusz. "Invariants of singularities of polynomials in two complex variables and the Newton diagrams." Univ. Iagel. Acta Math. 39 (2001): 179-188. 
  14. Ostrowski, A.M. "Uber die Bedeutung der Theorie der konvexen Polyeder fur die formale Algebra." Jahresberichte Deutsche Math. Verein 30 (1921): 98-99. 
  15. Płoski, Arkadiusz. "Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of C2." Ann. Polon. Math. 51 (1990): 275-281. 
  16. Płoski, Arkadiusz. "On the irreducibility of polynomials in several complex variables." Bull. Polish Acad. Sci. Math. 39, no. 3-4 (1991): 241-247. 
  17. Rubel, L. A., A. Schinzel, and H. Tverberg. "On difference polynomials and hereditarily irreducible polynomials." J. Number Theory 12, no. 2 (1980): 230-235. 
  18. Schneider, Rolf. Convex bodies: the Brunn-Minkowski theory. Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1993. 
  19. Webster, Roger. Convexity. New York: The Clarendon Press, Oxford University Press, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.