Nearly irreducibility of polynomials and the Newton diagrams

Mateusz Masternak

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)

  • Volume: 19, page 65-77
  • ISSN: 2300-133X

Abstract

top
Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.

How to cite

top

Mateusz Masternak. "Nearly irreducibility of polynomials and the Newton diagrams." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 65-77. <http://eudml.org/doc/296808>.

@article{MateuszMasternak2020,
abstract = {Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.},
author = {Mateusz Masternak},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {irreducibility of polynomials; Newton diagram; Newton polygon; plane algebraic curve},
language = {eng},
pages = {65-77},
title = {Nearly irreducibility of polynomials and the Newton diagrams},
url = {http://eudml.org/doc/296808},
volume = {19},
year = {2020},
}

TY - JOUR
AU - Mateusz Masternak
TI - Nearly irreducibility of polynomials and the Newton diagrams
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 65
EP - 77
AB - Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.
LA - eng
KW - irreducibility of polynomials; Newton diagram; Newton polygon; plane algebraic curve
UR - http://eudml.org/doc/296808
ER -

References

top
  1. Abhyankar, Shreeram S., and Lee A. Rubel. "Every difference polynomial has a connected zero-set." J. Indian Math. Soc. (N.S.) 43, no. 1-4 (1979): 69-78. 
  2. Ajzenberg L.A., and A.P. Južakow. Integral representations and residues in multidimentional complex analysis. , Novosibirsk: Izdat. Nauka, Sibirskoe Otdelenie, 1991. (in Russian). 
  3. Atiyah, Michael F. "Angular momentum, convex polyhedra and algebraic geometry." Proc. Edinburgh Math. Soc. (2) 26, no. 2, (1983): 121-133. 
  4. Bernstein, D.N. "The number of roots of a system of equations." Funkcional. Anal. i Priložen. 9, no. 3 (1975): 1-4. (in Russian) 
  5. Bernstein, D.N., A.G. Kušnirenko, and A.G. Hovanski˘ı. "Newton polyhedra." Uspehi Mat. Nauk 31, no. 3(189) (1976): 201-202. (in Russian) 
  6. Cassou-Noguè s, Pierrette, and Arkadiusz Płoski. "Invariants of plane curve singularities and Newton diagrams." Univ. Iagel. Acta Math. 49 (2011): 9-34. 
  7. Fulton, William. Algebraic curves. An introduction to algebraic geometry. New York-Amsterdam: W.A. Benjamin, Inc., 1969. 
  8. Hovanskiı, A.G. "Newton polyhedra, and toroidal varieties." Funkcional. Anal. i Priložen. 11, no. 4 (1977) 56-64. (in Russian) 
  9. Hovanskiı, A.G. "Newton polyhedra, and the genus of complete intersections." Funktsional. Anal. i Prilozhen. 12, no. 1, (1978): 51-61. (in Russian) 
  10. Kušnirenko, A.G. "Newton polyhedra and a number of roots of a system of k equations in k variables." Uspehi Mat. Nauk 30, no. 2 (1975): 266-267 (in Russian). 
  11. Kušnirenko, A.G. "Newton polyhedra and Bezout’s theorem." Funkcional. Anal. i Priložen. 10, no. 3 (1976): 82-83. (in Russian). 
  12. Kušnirenko, A.G. "Polyèdres de Newton et nombres de Milnor." Invent. Math. 32, no. 1 (1976): 1-31. 
  13. Masternak, Mateusz. "Invariants of singularities of polynomials in two complex variables and the Newton diagrams." Univ. Iagel. Acta Math. 39 (2001): 179-188. 
  14. Ostrowski, A.M. "Uber die Bedeutung der Theorie der konvexen Polyeder fur die formale Algebra." Jahresberichte Deutsche Math. Verein 30 (1921): 98-99. 
  15. Płoski, Arkadiusz. "Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of C2." Ann. Polon. Math. 51 (1990): 275-281. 
  16. Płoski, Arkadiusz. "On the irreducibility of polynomials in several complex variables." Bull. Polish Acad. Sci. Math. 39, no. 3-4 (1991): 241-247. 
  17. Rubel, L. A., A. Schinzel, and H. Tverberg. "On difference polynomials and hereditarily irreducible polynomials." J. Number Theory 12, no. 2 (1980): 230-235. 
  18. Schneider, Rolf. Convex bodies: the Brunn-Minkowski theory. Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1993. 
  19. Webster, Roger. Convexity. New York: The Clarendon Press, Oxford University Press, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.