Nearly irreducibility of polynomials and the Newton diagrams
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)
- Volume: 19, page 65-77
- ISSN: 2300-133X
Access Full Article
topAbstract
topHow to cite
topMateusz Masternak. "Nearly irreducibility of polynomials and the Newton diagrams." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 65-77. <http://eudml.org/doc/296808>.
@article{MateuszMasternak2020,
abstract = {Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.},
author = {Mateusz Masternak},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {irreducibility of polynomials; Newton diagram; Newton polygon; plane algebraic curve},
language = {eng},
pages = {65-77},
title = {Nearly irreducibility of polynomials and the Newton diagrams},
url = {http://eudml.org/doc/296808},
volume = {19},
year = {2020},
}
TY - JOUR
AU - Mateusz Masternak
TI - Nearly irreducibility of polynomials and the Newton diagrams
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 65
EP - 77
AB - Let f be a polynomial in two complex variables. We say that f is nearly irreducible if any two nonconstant polynomial factors of f have a common zero in C2. In the paper we give a criterion of nearly irreducibility for a given polynomial f in terms of its Newton diagram.
LA - eng
KW - irreducibility of polynomials; Newton diagram; Newton polygon; plane algebraic curve
UR - http://eudml.org/doc/296808
ER -
References
top- Abhyankar, Shreeram S., and Lee A. Rubel. "Every difference polynomial has a connected zero-set." J. Indian Math. Soc. (N.S.) 43, no. 1-4 (1979): 69-78.
- Ajzenberg L.A., and A.P. Južakow. Integral representations and residues in multidimentional complex analysis. , Novosibirsk: Izdat. Nauka, Sibirskoe Otdelenie, 1991. (in Russian).
- Atiyah, Michael F. "Angular momentum, convex polyhedra and algebraic geometry." Proc. Edinburgh Math. Soc. (2) 26, no. 2, (1983): 121-133.
- Bernstein, D.N. "The number of roots of a system of equations." Funkcional. Anal. i Priložen. 9, no. 3 (1975): 1-4. (in Russian)
- Bernstein, D.N., A.G. Kušnirenko, and A.G. Hovanski˘ı. "Newton polyhedra." Uspehi Mat. Nauk 31, no. 3(189) (1976): 201-202. (in Russian)
- Cassou-Noguè s, Pierrette, and Arkadiusz Płoski. "Invariants of plane curve singularities and Newton diagrams." Univ. Iagel. Acta Math. 49 (2011): 9-34.
- Fulton, William. Algebraic curves. An introduction to algebraic geometry. New York-Amsterdam: W.A. Benjamin, Inc., 1969.
- Hovanskiı, A.G. "Newton polyhedra, and toroidal varieties." Funkcional. Anal. i Priložen. 11, no. 4 (1977) 56-64. (in Russian)
- Hovanskiı, A.G. "Newton polyhedra, and the genus of complete intersections." Funktsional. Anal. i Prilozhen. 12, no. 1, (1978): 51-61. (in Russian)
- Kušnirenko, A.G. "Newton polyhedra and a number of roots of a system of k equations in k variables." Uspehi Mat. Nauk 30, no. 2 (1975): 266-267 (in Russian).
- Kušnirenko, A.G. "Newton polyhedra and Bezout’s theorem." Funkcional. Anal. i Priložen. 10, no. 3 (1976): 82-83. (in Russian).
- Kušnirenko, A.G. "Polyèdres de Newton et nombres de Milnor." Invent. Math. 32, no. 1 (1976): 1-31.
- Masternak, Mateusz. "Invariants of singularities of polynomials in two complex variables and the Newton diagrams." Univ. Iagel. Acta Math. 39 (2001): 179-188.
- Ostrowski, A.M. "Uber die Bedeutung der Theorie der konvexen Polyeder fur die formale Algebra." Jahresberichte Deutsche Math. Verein 30 (1921): 98-99.
- Płoski, Arkadiusz. "Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of C2." Ann. Polon. Math. 51 (1990): 275-281.
- Płoski, Arkadiusz. "On the irreducibility of polynomials in several complex variables." Bull. Polish Acad. Sci. Math. 39, no. 3-4 (1991): 241-247.
- Rubel, L. A., A. Schinzel, and H. Tverberg. "On difference polynomials and hereditarily irreducible polynomials." J. Number Theory 12, no. 2 (1980): 230-235.
- Schneider, Rolf. Convex bodies: the Brunn-Minkowski theory. Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press, 1993.
- Webster, Roger. Convexity. New York: The Clarendon Press, Oxford University Press, 1994.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.