Ricci solitons in a generalized weakly (Ricci) symmetric D-homothetically deformed Kenmotsu manifold

Adara M. Blaga; Kanak Kanti Baishya; Nihar Sarkar

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2019)

  • Volume: 18, page 123-136
  • ISSN: 2300-133X

Abstract

top
The object of the present paper is to investigate the nature of Ricci solitons on D-homothetically deformed Kenmotsu manifold with generalized weakly symmetric and generalized weakly Ricci symmetric curvature restrictions.

How to cite

top

Adara M. Blaga, Kanak Kanti Baishya, and Nihar Sarkar. "Ricci solitons in a generalized weakly (Ricci) symmetric D-homothetically deformed Kenmotsu manifold." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 18 (2019): 123-136. <http://eudml.org/doc/296815>.

@article{AdaraM2019,
abstract = {The object of the present paper is to investigate the nature of Ricci solitons on D-homothetically deformed Kenmotsu manifold with generalized weakly symmetric and generalized weakly Ricci symmetric curvature restrictions.},
author = {Adara M. Blaga, Kanak Kanti Baishya, Nihar Sarkar},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {Kenmotsu manifold; D-homothetic deformation; generalized weakly symmetric manifold; generalized weakly Ricci symmetric manifold; Ricci solitons},
language = {eng},
pages = {123-136},
title = {Ricci solitons in a generalized weakly (Ricci) symmetric D-homothetically deformed Kenmotsu manifold},
url = {http://eudml.org/doc/296815},
volume = {18},
year = {2019},
}

TY - JOUR
AU - Adara M. Blaga
AU - Kanak Kanti Baishya
AU - Nihar Sarkar
TI - Ricci solitons in a generalized weakly (Ricci) symmetric D-homothetically deformed Kenmotsu manifold
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2019
VL - 18
SP - 123
EP - 136
AB - The object of the present paper is to investigate the nature of Ricci solitons on D-homothetically deformed Kenmotsu manifold with generalized weakly symmetric and generalized weakly Ricci symmetric curvature restrictions.
LA - eng
KW - Kenmotsu manifold; D-homothetic deformation; generalized weakly symmetric manifold; generalized weakly Ricci symmetric manifold; Ricci solitons
UR - http://eudml.org/doc/296815
ER -

References

top
  1. Alegre, Pablo, David E. Blair and Alfonso Carriazo. "Generalized Sasakian-spaceforms." Israel J. Math. 141 (2004): 157-183. 
  2. Baishya, Kanak Kanti "Note on almost generalized pseudo-Ricci symmetric manifolds." Kyungpook Math. J. 57, no. 3 (2017): 517-523. 
  3. Baishya, Kanak Kanti "On generalized semi-pseudo symmetric manifold." submitted. 
  4. Baishya, Kanak Kanti. "On generalized weakly symmetric manifolds." Bull. Transilv. Univ. Brasov Ser. III 10(59), no. 1 (2017): 31-38. 
  5. Baishya, Kanak Kanti. "Ricci solitons in Sasakian manifold." Afr. Mat. 28, no. 7-8 (2017): 1061-1066. 
  6. Baishya, Kanak Kanti and Roy Partha Chowdhury. "theta-Ricci solitons in (LCS)n-manifold." Bull. Transilv. Univ. Brasov Ser. III 9(58), no. 2 (2016): 1-12. 
  7. Baishya, Kanak Kanti and Partha Roy Chowdhury. "On almost generalized weakly symmetric LP-Sasakian manifolds." An. Univ. Vest Timis. Ser. Mat.-Inform. 55, no. 2 (2017): 51-64. 
  8. Baishya, Kanak Kanti et all. "On almost generalized weakly symmetric Kenmotsu manifolds." Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 55, no. 2 (2016): 5-15. 
  9. Blaga, Adara M. "theta-Ricci solitons on Lorentzian para-Sasakian manifolds." Filomat 30, no. 2 (2016): 489-496. 
  10. Blaga, Adara M. "Eta-Ricci solitons on para-Kenmotsu manifolds." Balkan J. Geom. Appl. 20, no. 1 (2015): 1-13. 
  11. Blaga, Adara M., Kanak Kanti Baishya and Nihar Sarkar. "Ricci solitons in a D-homothetically deformed Kenmotsu manifold of (Ricci) semi-symmetric type." submitted. 
  12. Blaga, Adara M. and Mircea Crasmareanu. "Torse-forming theta-Ricci solitons in almost paracontact theta-Einstein geometry." Filomat 31, no. 2 (2017): 499-504. 
  13. Blair, David E. Contact manifolds in Riemannian geometry. Vol. 509 of Lecture Notes in Mathematics. Berlin-New York: Springer-Verlag, 1976. 
  14. Cartan, E. "Sur une classe remarquable d’espaces de Riemann." Bull. Soc. Math. France 54 (1926): 214-264. 
  15. Chaki, M.C. "On pseudo symmetric manifolds." An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33, no. 1 (1987): 53-58. 
  16. Dubey, R.S.D. "Generalized recurrent spaces." Indian J. Pure Appl. Math. 10, no. 12 (1979): 1508-1513. 
  17. Ghosh, Amalendu and Ramesh Sharma. "K-contact metrics as Ricci solitons." Beitr. Algebra Geom. 53, no. 1 (2012): 25-30. 
  18. Hamilton, Richard S. "The Ricci flow on surfaces." Contemp. Math. 71 (1988): 237-262. 
  19. Hamilton, Richard S. "Three-manifolds with positive Ricci curvature." J. Differential Geom. 17, no. 2 (1982): 255-306. 
  20. Kenmotsu, Katsuei. "A class of almost contact Riemannian manifolds." Tôhoku Math. J. (2) 24 (1972): 93-103. 
  21. Nagaraja, H.G., D.L. Kiran Kumar and V.S. Prasad. "Ricci solitons on Kenmotsu manifolds under D-homothetic deformation." Khayyam J. Math. 4, no. 1 (2018): 102-109. 
  22. Nagaraja, H.G. and C.R. Premalatha. "Ricci solitons in Kenmotsu manifolds." J. Math. Anal. 3, no. 2 (2012): 18-24. 
  23. Tamássy, L. and T.Q. Binh. "On weakly symmetric and weakly projective symmetric Riemannian manifolds." Colloq. Math. Soc. János Bolyai 56 (1992): 663-670. 
  24. Tarafdar, M. and Mussa A.A. Jawarneh. "Semi-pseudo Ricci symmetric manifold." J. Indian Inst. Sci. 73, no. 6 (1993): 591-596. 
  25. Walker, A.G. "On Ruse’s spaces of recurrent curvature." Proc. London Math. Soc. (2) 52 (1950): 36-64 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.