Counter examples for pseudo-amenability of some semigroup algebras

Amir Sahami

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)

  • Volume: 19, page 35-38
  • ISSN: 2300-133X

Abstract

top
In this short note, we give some counter examples which show that [11, Proposition 3.5] is not true. As a consequence, the arguments in [11, Proposition 4.10] is not valid.

How to cite

top

Amir Sahami. "Counter examples for pseudo-amenability of some semigroup algebras." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 35-38. <http://eudml.org/doc/296816>.

@article{AmirSahami2020,
abstract = {In this short note, we give some counter examples which show that [11, Proposition 3.5] is not true. As a consequence, the arguments in [11, Proposition 4.10] is not valid.},
author = {Amir Sahami},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {Pseudo-amenability; inverse semigroup; semigroup algebras},
language = {eng},
pages = {35-38},
title = {Counter examples for pseudo-amenability of some semigroup algebras},
url = {http://eudml.org/doc/296816},
volume = {19},
year = {2020},
}

TY - JOUR
AU - Amir Sahami
TI - Counter examples for pseudo-amenability of some semigroup algebras
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 35
EP - 38
AB - In this short note, we give some counter examples which show that [11, Proposition 3.5] is not true. As a consequence, the arguments in [11, Proposition 4.10] is not valid.
LA - eng
KW - Pseudo-amenability; inverse semigroup; semigroup algebras
UR - http://eudml.org/doc/296816
ER -

References

top
  1. Amini, Massoud. "Module amenability for semigroup algebras." Semigroup Forum 69, no. 2 (2004): 243-254. 
  2. Amini, Massoud, and Alireza Medghalchi. "Restricted algebras on inverse semigroups. I. Representation theory." Math. Nachr. 279, no. 16 (2006): 1739-1748. 
  3. Bodaghi, Abasalt, and Massoud Amini. "Module character amenability of Banach algebras." Arch. Math. (Basel) 99, no. 4 (2012): 353-365. 
  4. Bodaghi, Abasalt, and Ali Jabbari. "Module pseudo-amenability of Banach algebras." An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 63, no. 3 (2017): 449-461. 
  5. Dales, H. Garth, Anthony To-Ming Lau, and Dona Papert Strauss. "Banach algebras on semigroups and on their compactifications." Mem. Amer. Math. Soc. 205, no. 966 (2010): vi+165 pp. 
  6. Essmaili, Morteza, Mehdi Rostami, and Alireza R. Medghalchi. "Pseudocontractibility and pseudo-amenability of semigroup algebras." Arch. Math. (Basel) 97, no. 2 (2011): 167-177. 
  7. Essmaili, Morteza, Mehdi Rostami, and Abdolrasoul Pourabbas. "Pseudoamenability of certain semigroup algebras." Semigroup Forum 82, no. 3 (2011): 478-484. 
  8. Ghahramani, Fereidoun, and Yong Zhang. "Pseudo-amenable and pseudocontractible Banach algebras." Math. Proc. Cambridge Philos. Soc. 142, no. 1 (2007): 111-123. 
  9. Ghahramani, Fereidoun, and Richard J. Loy. "Generalized notions of amenability." J. Funct. Anal. 208, no. 1 (2004): 229-260. 
  10. Ghahramani, Fereidoun, Richard J. Loy, and Yong Zhang. "Generalized notions of amenability. II." J. Funct. Anal. 254, no. 7 (2008): 1776-1810. 
  11. Ogunsola, Olufemi J., and Ifeyinwa E. Daniel. "Pseudo-amenability and pseudocontractibility of restricted semigroup algebra." Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018): 89-102. 
  12. Runde, Volker. Lectures on amenability. Vol. 1774 of Lecture Notes in Mathematics. New York: Springer-Verlag, 2002. 
  13. Samei, Ebrahim, Nico Spronk, and Ross Stokke. "Biflatness and pseudoamenability of Segal algebras." Canad. J. Math. 62, no. 4 (2010): 845-869. 
  14. Zhang, Yong. Solved and unsolved problems in generalized notions of amenability for Banach algebras. Vol. 91 of Banach Center Publications. Warszawa: Inst. Mat. Pol. Acad. Sci., 2010. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.