Approximate multi-Jensen-cubic mappings and a fixed point theorem

Elahe Ramzanpour; Abasalt Bodaghi

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)

  • Volume: 19, page 141-154
  • ISSN: 2300-133X

Abstract

top
In this paper, we introduce multi-Jensen-cubic mappings and unify the system of functional equations defining the multi-Jensen-cubic mapping to a single equation. Applying a fixed point theorem, we establish the generalized Hyers-Ulam stability of multi-Jensen-cubic mappings. As a known outcome, we show that every approximate multi-Jensen-cubic mapping can be multi-Jensen-cubic.

How to cite

top

Elahe Ramzanpour, and Abasalt Bodaghi. "Approximate multi-Jensen-cubic mappings and a fixed point theorem." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 141-154. <http://eudml.org/doc/296818>.

@article{ElaheRamzanpour2020,
abstract = {In this paper, we introduce multi-Jensen-cubic mappings and unify the system of functional equations defining the multi-Jensen-cubic mapping to a single equation. Applying a fixed point theorem, we establish the generalized Hyers-Ulam stability of multi-Jensen-cubic mappings. As a known outcome, we show that every approximate multi-Jensen-cubic mapping can be multi-Jensen-cubic.},
author = {Elahe Ramzanpour, Abasalt Bodaghi},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {Banach space; multi-Jensen-cubic functional equation; Hyers-Ulam stability},
language = {eng},
pages = {141-154},
title = {Approximate multi-Jensen-cubic mappings and a fixed point theorem},
url = {http://eudml.org/doc/296818},
volume = {19},
year = {2020},
}

TY - JOUR
AU - Elahe Ramzanpour
AU - Abasalt Bodaghi
TI - Approximate multi-Jensen-cubic mappings and a fixed point theorem
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 141
EP - 154
AB - In this paper, we introduce multi-Jensen-cubic mappings and unify the system of functional equations defining the multi-Jensen-cubic mapping to a single equation. Applying a fixed point theorem, we establish the generalized Hyers-Ulam stability of multi-Jensen-cubic mappings. As a known outcome, we show that every approximate multi-Jensen-cubic mapping can be multi-Jensen-cubic.
LA - eng
KW - Banach space; multi-Jensen-cubic functional equation; Hyers-Ulam stability
UR - http://eudml.org/doc/296818
ER -

References

top
  1. Aoki, Tosio. "On the stability of the linear transformation in Banach spaces." J. Math. Soc. Japan 2 (1950): 64-66. 
  2. Bahyrycz, Anna, and Jolanta Olko. "On stability and hyperstability of an equation characterizing multi-Cauchy-Jensen mappings." Results Math. 73, no. 2 (2018): Article 55. 
  3. Bahyrycz, Anna, and Krzysztof Cieplinski, and Jolanta Olko. "On an equation characterizing multi-Cauchy-Jensen mappings and its Hyers-Ulam stability." Acta Math. Sci. Ser. B (Engl. Ed.) 35, no. 6 (2015): 1349-1358. 
  4. Bahyrycz, Anna, and Krzysztof Cieplinski, and Jolanta Olko. "On an equation characterizing multi-additive-quadratic mappings and its Hyers-Ulam stability." Appl. Math. Comput. 265 (2015): 448-455. 
  5. Bodaghi, Abasalt. "Intuitionistic fuzzy stability of the generalized forms of cubic and quartic functional equations." J. Intel. Fuzzy Syst. 30, no. 4 (2016): 2309-2317. 
  6. Bodaghi, Abasalt. "Ulam stability of a cubic functional equation in various spaces." Mathematica 55(78), no. 2 (2013): 125-141. 
  7. Bodaghi, Abasalt. "Cubic derivations on Banach algebras." Acta Math. Vietnam. 38, no. 4 (2013): 517-528. 
  8. Bodaghi, Abasalt, and Seyed Mohsen Moosavi, and Hamidreza Rahimi. "The generalized cubic functional equation and the stability of cubic Jordan *-derivations." Ann. Univ. Ferrara Sez. VII Sci. Mat. 59, no. 2 (2013): 235-250. 
  9. Bodaghi, Abasalt, and Choonkil Park, and Oluwatosin Temitope Mewomo. "Multiquartic functional equations." Adv. Difference Equ. 2019: Paper No. 312 (2019). 
  10. Bodaghi, Abasalt, and Behrouz Shojaee. "On an equation characterizing multicubic mappings and its stability and hyperstability." Fixed Point Theory to appear. 
  11. Brillouët-Belluot, Nicole, and Janusz Brzdek, and Krzysztof Cieplinski. "On some recent developments in Ulam’s type stability." Abstr. Appl. Anal. 2012 (2012): Article ID 71693. 
  12. Brzdek, Janusz, and Jacek Chudziak, and Zsolt Páles. "A fixed point approach to stability of functional equations." Nonlinear Anal. 74, no. 17 (2011): 6728-6732. 
  13. Brzdek, Janusz, and Krzysztof Cieplinski. "Hyperstability and superstability." Abstr. Appl. Anal. 2013 (2013): Article ID 401756. 
  14. Brzdek, Janusz, and Dorian Popa, and Bing Xu. "Remarks on stability of linear recurrence of higher order." Appl. Math. Lett. 23, no. 12 (2010): 1459-1463. 
  15. Brzdek, Janusz, and Paweł Wójcik. "On approximate solutions of some difference equations." Bull. Aust. Math. Soc. 95, no. 3 (2017): 476-481. 
  16. Cadariu, Liviu I., and Viorel Radu. "Fixed points and the stability of quadratic functional equations." An. Univ. Timisoara Ser. Mat.-Inform. 41, no. 1 (2003): 25-48. 
  17. Cieplinski, Krzysztof. "On the generalized Hyers-Ulam stability of multi-quadratic mappings." Comput. Math. Appl. 62, no. 9 (2011): 3418-3426. 
  18. Cieplinski, Krzysztof. "Stability of the multi-Jensen equation." J. Math. Anal. Appl. 363, no. 1 (2010): 249-254. 
  19. Cieplinski, Krzysztof. "On multi-Jensen functions and Jensen difference." Bull. Korean Math. Soc. 45, no. 4 (2008): 729-737. 
  20. Cieplinski, Krzysztof. "Generalized stability of multi-additive mappings." Appl. Math. Lett. 23, no. 10 (2010): 1291-1294. 
  21. Gavruta, Pascu. "A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings." J. Math. Anal. Appl. 184, no. 3 (1994): 431-436. 
  22. Hyers, Donald H. "On the stability of the linear functional equation." Proc. Nat. Acad. Sci. U.S.A. 27 (1941): 222-224. 
  23. Jun, Kil-Woung, and Hark Kim. "On the Hyers-Ulam-Rassias stability of a general cubic functional equation." Math. Inequal. Appl. 6, no. 2 (2003): 289-302. 
  24. Jun, Kil-Woung, and Hark Kim. "The generalized Hyers-Ulam-Rassias stability of a cubic functional equation." J. Math. Anal. Appl. 274, no. 2 (2002): 267-278. 
  25. Jung, Soon-Mo. "Hyers-Ulam-Rassias stability of Jensen’s equation and its application." Proc. Amer. Math. Soc. 126, no. 11 (1998): 3137-3143. 
  26. Jung, Soon-Mo, and Dorian Popa, and Themistocles M. Rassias. "On the stability of the linear functional equation in a single variable on complete metric groups." J. Global Optim. 59, no. 1 (2014): 165-171. 
  27. Kominek, Zygfryd. "On a local stability of the Jensen functional equation." Demonstratio Math. 22, no. 2 (1989): 499-507. 
  28. Kuczma, Marek. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality. Basel: Birkhäuser Basel, 2009. 
  29. Lee, Yang-Hi, and Kil Jun. "A generalization of the Hyers-Ulam-Rassias stability of Jensen’s equation." J. Math. Anal. Appl. 238, no. 1 (1999): 305-315. 
  30. Park, Choonkil, and Abasalt Bodaghi. "Two multi-cubic functional equations and some results on the stability in modular spaces." J. Inequal. Appl. 2020, Paper No. 6 (2020). 
  31. Popa, Dorian. "Hyers-Ulam-Rassias stability of the general linear equation." Nonlinear Funct. Anal. Appl. 7, no. 4 (2002): 581-588. 
  32. Popa, Dorian. "Hyers-Ulam-Rassias stability of a linear recurrence." J. Math. Anal. Appl. 309, no. 2 (2005): 591-597. 
  33. Prager, Wolfgang, and Jens Schwaiger. "Multi-affine and multi-Jensen functions and their connection with generalized polynomials." Aequationes Math. 69, no. 1-2 (2005): 41-57. 
  34. Prager, Wolfgang, and Jens Schwaiger. "Stability of the multi-Jensen equation." Bull. Korean Math. Soc. 45, no. 1 (2008): 133-142. 
  35. Rassias, John Michael. "Solution of the Ulam stability problem for cubic mappings." Glas. Mat. Ser. III 36, no. 1 (2001): 63-72. 
  36. Rassias, Themistocles M. "On the stability of the linear mapping in Banach spaces." Proc. Amer. Math. Soc. 72, no. 2 (1978): 297-300. 
  37. Salimi, Somaye, and Abasalt Bodaghi. "A fixed point application for the stability and hyperstability of multi-Jensen-quadratic mappings." J. Fixed Point Theory Appl. 22, no. 1 (2020): Article No. 9. 
  38. Ulam, Stanisław. Problems in Modern Mathematics, New York: John Wiley and Sons, 1940. 
  39. Xu, Tian Zhou. "Stability of multi-Jensen mappings in non-Archimedean normed spaces." J. Math. Phys. 53, no. 2 (2012): Article No. 023507. 
  40. Zhao, Xiaopeng, and Xiuzhong Yang, and Chin Pang. "Solution and stability of the multiquadratic functional equation." Abstr. Appl. Anal. 2013 (2013): Article ID 415053. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.