A new result on the quasi power increasing sequences
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)
- Volume: 19, page 95-103
- ISSN: 2300-133X
Access Full Article
topAbstract
topHow to cite
topHikmet Seyhan Özarslan. "A new result on the quasi power increasing sequences." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 95-103. <http://eudml.org/doc/296819>.
@article{HikmetSeyhanÖzarslan2020,
abstract = {This paper presents a theorem dealing with absolute matrix summability of infinite series. This theorem has been proved taking quasi β-power increasing sequence instead of almost increasing sequence.},
author = {Hikmet Seyhan Özarslan},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
language = {eng},
pages = {95-103},
title = {A new result on the quasi power increasing sequences},
url = {http://eudml.org/doc/296819},
volume = {19},
year = {2020},
}
TY - JOUR
AU - Hikmet Seyhan Özarslan
TI - A new result on the quasi power increasing sequences
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 95
EP - 103
AB - This paper presents a theorem dealing with absolute matrix summability of infinite series. This theorem has been proved taking quasi β-power increasing sequence instead of almost increasing sequence.
LA - eng
UR - http://eudml.org/doc/296819
ER -
References
top- Bari, Nina Karlovna, and Sergey B. Steckin. "Best approximations and differential properties of two conjugate functions." Trudy Moskov. Mat. Obšc. 5 (1956): 483-522.
- Bor, Hüseyin. "On two summability methods." Math. Proc. Cambridge Philos. Soc. 97, no. 1 (1985): 147-149.
- Bor, Hüseyin, and Lokenath Debnath. "Quasi β-power increasing sequences." Int. J. Math. Math. Sci. no. 41-44 (2004): 2371-2376.
- Flett, Thomas Muirhead. "On an extension of absolute summability and some theorems of Littlewood and Paley." Proc. London Math. Soc. (3) 7 (1957): 113-141.
- Hardy, Godfrey Harold. Divergent Series. Oxford: Oxford University Press, 1949.
- Leindler, László. "A new application of quasi power increasing sequences." Publ. Math. Debrecen 58, no. 4 (2001): 791-796.
- Maddox, Ivor John. Introductory Mathematical Analysis. Bristol: Adam Hilger Ltd., 1977.
- Mazhar, Syed Mohammad. "On |C, 1|k summability factors of infinite series." Indian J. Math. 14 (1972): 45-48.
- Mazhar, Syed Mohammad. "Absolute summability factors of infinite series." Kyungpook Math. J. 39, no. 1 (1999): 67-73.
- Ögdük, H. Nedret. "A summability factor theorem by using an almost increasing sequence." J. Comput. Anal. Appl. 11, no. 1 (2009): 45-53.
- Özarslan, Hikmet Seyhan, and Enes Yavuz. "A new note on absolute matrix summability." J. Inequal. Appl. (2013): Article 474.
- Özarslan, Hikmet Seyhan, and Aysegül Keten. "On a new application of almost increasing sequences." J. Inequal. Appl. (2013): Article 13.
- Özarslan, Hikmet Seyhan, and Enes Yavuz. "New theorems for absolute matrix summability factors." Gen. Math. Notes 23, no. 2 (2014): 63-70.
- Özarslan, Hikmet Seyhan. "On generalized absolute matrix summability methods." Int. J. Anal. Appl. 12, no. 1 (2016): 66-70.
- Özarslan, Hikmet Seyhan, and Ahmet Karakas. "A new result on the almost increasing sequences." J. Comput.Anal.Appl. 22, no. 6 (2017): 989-998.
- Özarslan, Hikmet Seyhan, and Bagdagül Kartal. "A generalization of a theorem of Bor." J. Inequal. Appl. (2017): Article 179.
- Özarslan, Hikmet Seyhan. "A new application of quasi power increasing sequences." AIP Conference Proceedings 1926, (2018): 1-6.
- Özarslan, Hikmet Seyhan. "A new factor theorem for absolute matrix summability." Quaest. Math. 42, no. 6 (2019): 803-809.
- Özarslan, Hikmet Seyhan. "Generalized quasi power increasing sequences." Appl. Math. E-Notes 19 (2019): 38-45.
- Özarslan, Hikmet Seyhan. "An application of absolute matrix summability using almost increasing and δ-quasi-monotone sequences." Kyungpook Math. J. 59, no. 2 (2019): 233-240.
- Sulaiman, Waadallah Tawfeeq. "Inclusion theorems for absolute matrix summability methods of an infinite series. IV." Indian J. Pure Appl. Math. 34, no. 11 (2003): 1547-1557.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.