On the Chow ring of certain Fano fourfolds
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)
- Volume: 19, page 39-52
- ISSN: 2300-133X
Access Full Article
topAbstract
topHow to cite
topRobert Laterveer. "On the Chow ring of certain Fano fourfolds." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 39-52. <http://eudml.org/doc/296820>.
@article{RobertLaterveer2020,
abstract = {We prove that certain Fano fourfolds of K3 type constructed by Fatighenti–Mongardi have a multiplicative Chow–Künneth decomposition. We present some consequences for the Chow ring of these fourfolds.},
author = {Robert Laterveer},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {Algebraic cycles; Chow ring; motives; Beauville “splitting property”; Fano variety; K3 surface},
language = {eng},
pages = {39-52},
title = {On the Chow ring of certain Fano fourfolds},
url = {http://eudml.org/doc/296820},
volume = {19},
year = {2020},
}
TY - JOUR
AU - Robert Laterveer
TI - On the Chow ring of certain Fano fourfolds
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 39
EP - 52
AB - We prove that certain Fano fourfolds of K3 type constructed by Fatighenti–Mongardi have a multiplicative Chow–Künneth decomposition. We present some consequences for the Chow ring of these fourfolds.
LA - eng
KW - Algebraic cycles; Chow ring; motives; Beauville “splitting property”; Fano variety; K3 surface
UR - http://eudml.org/doc/296820
ER -
References
top- Beauville, Arnaud. "On the splitting of the Bloch-Beilinson filtration. In Algebraic cycles and motives. Vol. 2." , Vol. 344 of London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press, 2007.
- Beauville, Arnaud, and Claire Voisin "On the Chow ring of a K3 surface." J. Algebraic Geom. 13, no. 3 (2004): 417-426.
- Deligne, Pierre. "Théorème de Lefschetz et critères de dégénérescence de suites spectrales." Inst. Hautes Études Sci. Publ. Math. 35 (1968): 259-278.
- Deninger, Christopher, and Jacob Murre. "Motivic decomposition of abelian schemes and the Fourier transform." J. Reine Angew. Math. 422 (1991): 201-219.
- Fatighenti, Enrico, and Giovanni Mongardi. "Fano varieties of K3 type and IHS manifolds." arXiv (2019): 1904.05679.
- Fu, Lie, Robert Laterveer, and Charles Vial. "The generalized Franchetta conjecture for some hyper-Kähler varieties." J. Math. Pures Appl. (9) 130 (2019): 1-35.
- Fu, Lie, Zhiyu Tian, and Charles Vial. "Motivic hyper-Kähler resolution conjecture, I: generalized Kummer varieties." Geom. Topol. 23, no. 1 (2019): 427-492.
- Fu, Lie, and Charles Vial. "Distinguished cycles on varieties with motive of abelian type and the Section Property", arXiv (2017): 1709.05644v2.
- Laterveer, Robert. "Algebraic cycles on some special hyperkähler varieties." Rend. Mat. Appl. (7) 38, no. 2 (2017): 243-276. Cited on 49.
- Laterveer, Robert. "A remark on the Chow ring of Küchle fourfolds of type d3." Bull. Aust. Math. Soc. 100, no. 3 (2019): 410-418.
- Laterveer, Robert. "Algebraic cycles and Verra fourfolds." Tohoku Math. J. (to appear)
- Laterveer, Robert. "On the Chow ring of Fano varieties of type S2." preprint.
- Laterveer, Robert and Charles Vial. "On the Chow ring of Cynk–Hulek Calabi–Yau varieties and Schreieder varieties." Canadian Journal of Math. DOI: 10.4153/S0008414X19000191.
- Murre, Jacob P. "On a conjectural filtration on the Chow groups of an algebraic variety I and II. Indag. Math. (N.S.) 4, no. 2 (1993): 177-201.
- Murre, Jacob P., Jan Nagel, and Chris A.M. Peters. Lectures on the theory of pure motives. Providence, RI: American Mathematical Society, 2013.
- Pavic, Nebojsa, Junliang Shen, and Qizheng Yin. "On O’Grady’s generalized Franchetta conjecture." Int. Math. Res. Not. IMRN 2017, no. 16 (2017): 4971-4983.
- Scholl, Anthony J. "Classical motives." In Vol. 55 of Proc. Sympos. Pure Math., 163–187. Providence, RI: Amer. Math. Soc., 1994.
- Shen, Mingmin, and Charles Vial. "The Fourier transform for certain hyperkähler fourfolds." Mem. Amer. Math. Soc. 240 (2016): no. 1139.
- Shen, Mingmin, and Charles Vial. "The motive of the Hilbert cube X[3]." Forum Math. Sigma 4 (2016): e30.
- Vial, Charles. "On the motive of some hyperKähler varieties." J. Reine Angew. Math. 725 (2017): 235-247.
- Voisin, Claire. "Chow rings and decomposition theorems for families of K3 surfaces and Calabi-Yau hypersurfaces." Geom. Topol. 16, no. 1 (2012): 433-473.
- Voisin, Claire. Chow rings, decomposition of the diagonal, and the topology of families. Vol. 187 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 2014.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.