The p-semisimple property for some generalizations of BCI algebras and its applications

Lidia Obojska; Andrzej Walendziak

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)

  • Volume: 19, page 79-94
  • ISSN: 2300-133X

Abstract

top
This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.

How to cite

top

Lidia Obojska, and Andrzej Walendziak. "The p-semisimple property for some generalizations of BCI algebras and its applications." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 79-94. <http://eudml.org/doc/296822>.

@article{LidiaObojska2020,
abstract = {This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.},
author = {Lidia Obojska, Andrzej Walendziak},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {RM/tRM/*RM/RM**/*aRM/BCI/BCH/BZ/pre-BZ/pre-BCI algebras; p-semisimplicity; mereology; antisymmetry},
language = {eng},
pages = {79-94},
title = {The p-semisimple property for some generalizations of BCI algebras and its applications},
url = {http://eudml.org/doc/296822},
volume = {19},
year = {2020},
}

TY - JOUR
AU - Lidia Obojska
AU - Andrzej Walendziak
TI - The p-semisimple property for some generalizations of BCI algebras and its applications
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 79
EP - 94
AB - This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.
LA - eng
KW - RM/tRM/*RM/RM**/*aRM/BCI/BCH/BZ/pre-BZ/pre-BCI algebras; p-semisimplicity; mereology; antisymmetry
UR - http://eudml.org/doc/296822
ER -

References

top
  1. Aslam, Muhammad, and Allah-Bakhsh Thaheem. "A note on p-semisimple BCIalgebras." Math. Japon. 36, no. 1 (1991): 39-45. 
  2. Clay, Robert Edward. "Relation of Lesniewski’s mereology to Boolean algebra." J. Symbolic Logic 39 (1974): 638-648. 
  3. Hoo, Cheong Seng. "Closed ideals and p-semisimple BCI-algebras." Math. Japon. 35, no. 6 (1990): 1103-1112. 
  4. Hu, Qing Ping, and Xin Li. "On BCH-algebras." Math. Sem. Notes Kobe Univ. 11, no. 2 (1983): 313-320. 
  5. Imai, Yasuyuki, and Kiyoshi Iséki. "On axiom systems of propositional calculi. XIV." Proc. Japan Acad. 42 (1966): 19-22. 
  6. Iorgulescu, Afrodita. "New generalizations of BCI, BCK and Hilbert algebras – Part I." J. Mult.-Valued Logic Soft Comput. 27, no. 4 (2016): 353-406. 
  7. Iorgulescu, Afrodita. "New generalizations of BCI, BCK and Hilbert algebras – Part II." J. Mult.-Valued Logic Soft Comput. 27, no. 4 (2016): 407-456. 
  8. Iséki, Kiyoshi. "An algebra related with a propositional calculus." Proc. Japan Acad. 42 (1966): 26-29. 
  9. Kim, Hee Sik, and Hong Goo Park. "On 0-commutative B-algebras." Sci. Math. Jpn. 62, no. 1 (2005): 7-12. 
  10. Lei, Tian De, and Chang Chang Xi. "p-radical in BCI-algebras." Math. Japon. 30, no. 4 (1985): 511-517. 
  11. Lesniewski, Stanisław. Stanislaw Lesniewski: Collected Works - Volumes I and II. Vol. 44 of Nijhoff International Philosophy Series. Dordrecht: Kluwer Academic Publishers, 1992. 
  12. Loeb, Iris. "From Mereology to Boolean Algebra: The Role of Regular Open Sets in Alfred Tarski’s Work." In: The History and Philosophy of Polish Logic: Essays in Honour of Jan Wolenski, 259-277. New York: Palgrave Macmillan, 2014. 
  13. Meng, Dao Ji. "BCI-algebras and abelian groups." Math. Japon. 32, no. 5 (1987): 693-696. 
  14. Obojska, Lidia. "Some remarks on supplementation principles in the absence of antisymmetry." Rev. Symb. Log. 6, no. 2 (2013): 343-347. 
  15. Obojska, Lidia. U zródeł zbiorów kolektywnych: o mereologii nieantysymetrycznej. Siedlce: Wydawnictwo UPH, 2013. 
  16. Patrignani, Claudia et al. (Particle Data Group). "Review of Particle Physics." Chin. Phys. C 40, no. 10 (2016): 100001. 
  17. Pietruszczak, Andrzej. Metamereologia. Torun: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2000. 
  18. Shohani, Javad, Rajab Ali Borzooei, and Morteza Afshar Jahanashah. "Basic BCI-algebras and abelian groups are equivalent." Sci. Math. Jpn. 66, no. 2 (2007): 243-245. 
  19. Walendziak, Andrzej. "On BF-algebras." Math. Slovaca 57, no. 2 (2007): 119-128. 
  20. Ye, Reifen. "On BZ-algebras." In: Selected paper on BCI/BCK-algebras and Computer Logics, 21-24. Shaghai: Shaghai Jiaotong University Press, 1991. 
  21. Zhang, Qun. "Some other characterizations of p-semisimple BCI-algebras." Math. Japon. 36, no. 5 (1991): 815-817. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.