The p-semisimple property for some generalizations of BCI algebras and its applications
Lidia Obojska; Andrzej Walendziak
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2020)
- Volume: 19, page 79-94
- ISSN: 2300-133X
Access Full Article
topAbstract
topHow to cite
topLidia Obojska, and Andrzej Walendziak. "The p-semisimple property for some generalizations of BCI algebras and its applications." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19 (2020): 79-94. <http://eudml.org/doc/296822>.
@article{LidiaObojska2020,
abstract = {This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.},
author = {Lidia Obojska, Andrzej Walendziak},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {RM/tRM/*RM/RM**/*aRM/BCI/BCH/BZ/pre-BZ/pre-BCI algebras; p-semisimplicity; mereology; antisymmetry},
language = {eng},
pages = {79-94},
title = {The p-semisimple property for some generalizations of BCI algebras and its applications},
url = {http://eudml.org/doc/296822},
volume = {19},
year = {2020},
}
TY - JOUR
AU - Lidia Obojska
AU - Andrzej Walendziak
TI - The p-semisimple property for some generalizations of BCI algebras and its applications
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2020
VL - 19
SP - 79
EP - 94
AB - This paper presents some generalizations of BCI algebras (the RM, tRM, *RM, RM**, *RM**, aRM**, *aRM**, BCH**, BZ, pre-BZ and pre-BCI algebras). We investigate the p-semisimple property for algebras mentioned above; give some examples and display various conditions equivalent to p-semisimplicity. Finally, we present a model of mereology without antisymmetry (NAM) which could represent a tRM algebra.
LA - eng
KW - RM/tRM/*RM/RM**/*aRM/BCI/BCH/BZ/pre-BZ/pre-BCI algebras; p-semisimplicity; mereology; antisymmetry
UR - http://eudml.org/doc/296822
ER -
References
top- Aslam, Muhammad, and Allah-Bakhsh Thaheem. "A note on p-semisimple BCIalgebras." Math. Japon. 36, no. 1 (1991): 39-45.
- Clay, Robert Edward. "Relation of Lesniewski’s mereology to Boolean algebra." J. Symbolic Logic 39 (1974): 638-648.
- Hoo, Cheong Seng. "Closed ideals and p-semisimple BCI-algebras." Math. Japon. 35, no. 6 (1990): 1103-1112.
- Hu, Qing Ping, and Xin Li. "On BCH-algebras." Math. Sem. Notes Kobe Univ. 11, no. 2 (1983): 313-320.
- Imai, Yasuyuki, and Kiyoshi Iséki. "On axiom systems of propositional calculi. XIV." Proc. Japan Acad. 42 (1966): 19-22.
- Iorgulescu, Afrodita. "New generalizations of BCI, BCK and Hilbert algebras – Part I." J. Mult.-Valued Logic Soft Comput. 27, no. 4 (2016): 353-406.
- Iorgulescu, Afrodita. "New generalizations of BCI, BCK and Hilbert algebras – Part II." J. Mult.-Valued Logic Soft Comput. 27, no. 4 (2016): 407-456.
- Iséki, Kiyoshi. "An algebra related with a propositional calculus." Proc. Japan Acad. 42 (1966): 26-29.
- Kim, Hee Sik, and Hong Goo Park. "On 0-commutative B-algebras." Sci. Math. Jpn. 62, no. 1 (2005): 7-12.
- Lei, Tian De, and Chang Chang Xi. "p-radical in BCI-algebras." Math. Japon. 30, no. 4 (1985): 511-517.
- Lesniewski, Stanisław. Stanislaw Lesniewski: Collected Works - Volumes I and II. Vol. 44 of Nijhoff International Philosophy Series. Dordrecht: Kluwer Academic Publishers, 1992.
- Loeb, Iris. "From Mereology to Boolean Algebra: The Role of Regular Open Sets in Alfred Tarski’s Work." In: The History and Philosophy of Polish Logic: Essays in Honour of Jan Wolenski, 259-277. New York: Palgrave Macmillan, 2014.
- Meng, Dao Ji. "BCI-algebras and abelian groups." Math. Japon. 32, no. 5 (1987): 693-696.
- Obojska, Lidia. "Some remarks on supplementation principles in the absence of antisymmetry." Rev. Symb. Log. 6, no. 2 (2013): 343-347.
- Obojska, Lidia. U zródeł zbiorów kolektywnych: o mereologii nieantysymetrycznej. Siedlce: Wydawnictwo UPH, 2013.
- Patrignani, Claudia et al. (Particle Data Group). "Review of Particle Physics." Chin. Phys. C 40, no. 10 (2016): 100001.
- Pietruszczak, Andrzej. Metamereologia. Torun: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2000.
- Shohani, Javad, Rajab Ali Borzooei, and Morteza Afshar Jahanashah. "Basic BCI-algebras and abelian groups are equivalent." Sci. Math. Jpn. 66, no. 2 (2007): 243-245.
- Walendziak, Andrzej. "On BF-algebras." Math. Slovaca 57, no. 2 (2007): 119-128.
- Ye, Reifen. "On BZ-algebras." In: Selected paper on BCI/BCK-algebras and Computer Logics, 21-24. Shaghai: Shaghai Jiaotong University Press, 1991.
- Zhang, Qun. "Some other characterizations of p-semisimple BCI-algebras." Math. Japon. 36, no. 5 (1991): 815-817.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.