A novel LMI-based robust model predictive control for DFIG-based wind energy conversion systems

Amir Gholami; Alireza Sahab; Abdolreza Tavakoli; Behnam Alizadeh

Kybernetika (2019)

  • Volume: 55, Issue: 6, page 1034-1049
  • ISSN: 0023-5954

Abstract

top
The optimal and reliable performance of doubly fed induction generator is essential for the efficient and optimal operation of wind energy conversion systems. This paper considers the nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predictive control technique of active and reactive power by the use of the linear matrix inequality in DFIG-based WECS. The control law is obtained through the LMI-based model predictive control that allows considering both economic and tracking factors by optimization of an objective function, constraints on control signal and states of system and effects of nonlinearities, generator parameter uncertainties and external disturbances. Robust stability in the face of bounded disturbances and generator uncertainty is shown using Lyapunov technique. Numerical simulations show that the proposed control method is able to meet the desired specification in active and reactive power control in the presence of varieties of wind speed and pitch angle.

How to cite

top

Gholami, Amir, et al. "A novel LMI-based robust model predictive control for DFIG-based wind energy conversion systems." Kybernetika 55.6 (2019): 1034-1049. <http://eudml.org/doc/296931>.

@article{Gholami2019,
abstract = {The optimal and reliable performance of doubly fed induction generator is essential for the efficient and optimal operation of wind energy conversion systems. This paper considers the nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predictive control technique of active and reactive power by the use of the linear matrix inequality in DFIG-based WECS. The control law is obtained through the LMI-based model predictive control that allows considering both economic and tracking factors by optimization of an objective function, constraints on control signal and states of system and effects of nonlinearities, generator parameter uncertainties and external disturbances. Robust stability in the face of bounded disturbances and generator uncertainty is shown using Lyapunov technique. Numerical simulations show that the proposed control method is able to meet the desired specification in active and reactive power control in the presence of varieties of wind speed and pitch angle.},
author = {Gholami, Amir, Sahab, Alireza, Tavakoli, Abdolreza, Alizadeh, Behnam},
journal = {Kybernetika},
keywords = {linear matrix inequality; robust model predictive control; doubly fed induction generator; active and reactive power; optimization},
language = {eng},
number = {6},
pages = {1034-1049},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A novel LMI-based robust model predictive control for DFIG-based wind energy conversion systems},
url = {http://eudml.org/doc/296931},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Gholami, Amir
AU - Sahab, Alireza
AU - Tavakoli, Abdolreza
AU - Alizadeh, Behnam
TI - A novel LMI-based robust model predictive control for DFIG-based wind energy conversion systems
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 6
SP - 1034
EP - 1049
AB - The optimal and reliable performance of doubly fed induction generator is essential for the efficient and optimal operation of wind energy conversion systems. This paper considers the nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predictive control technique of active and reactive power by the use of the linear matrix inequality in DFIG-based WECS. The control law is obtained through the LMI-based model predictive control that allows considering both economic and tracking factors by optimization of an objective function, constraints on control signal and states of system and effects of nonlinearities, generator parameter uncertainties and external disturbances. Robust stability in the face of bounded disturbances and generator uncertainty is shown using Lyapunov technique. Numerical simulations show that the proposed control method is able to meet the desired specification in active and reactive power control in the presence of varieties of wind speed and pitch angle.
LA - eng
KW - linear matrix inequality; robust model predictive control; doubly fed induction generator; active and reactive power; optimization
UR - http://eudml.org/doc/296931
ER -

References

top
  1. S., Boyd,, L., Ghaui,, E., Feron,, V., Balakrishnan,, 10.1137/1.9781611970777, SIAM, Philadelphia 1994. DOI10.1137/1.9781611970777
  2. P., Campo,, M., Morari,, Robust model predictive control., In: Proc. American Control Conference, Minneapolis 1987. 
  3. S., Chondrogiannis,, M., Barnes,, 10.1049/iet-rpg:20070086, IET Renew. Power Gener. 2 (2008), 170-180. DOI10.1049/iet-rpg:20070086
  4. M., Depenbrock,, 10.1109/63.17963, IEEE Trans. Power Electron. 3 (1988), 420-429. DOI10.1109/63.17963
  5. J., Dong,, S., Li,, S., Wu,, T., He,, B., Yang,, H., Shu,, J., Yu,, 10.3390/en10081082, Energies 10 (2017), 8, 1082. DOI10.3390/en10081082
  6. M., Duong,, F., Grimaccia,, S., Leva,, M., Mussetta,, E., Ogliari,, 10.1016/j.renene.2014.03.072, Renew. Energy 70 (2014), 197-203. DOI10.1016/j.renene.2014.03.072
  7. M., Fei,, B., Pal,, 10.1109/tec.2006.881080, IEEE Trans. Energy Convers 22 (2007), 728-736. DOI10.1109/tec.2006.881080
  8. V., Ghaffari,, Vahid, Naghavi, S., A., Safavi, A., M., Shafiee,, 10.1109/ascc.2013.6606169, In: Control Conference (ASCC), Asian 2013. DOI10.1109/ascc.2013.6606169
  9. S., Hao,, E., Abdi,, F., Barati,, R., McMahon,, 10.1109/tie.2009.2024660, IEEE Trans. Ind. Electron. 56 (2009), 4220-4228. DOI10.1109/tie.2009.2024660
  10. B., Hopfensperger,, D., Atkinson,, R., Lakin,, 10.1049/ip-epa:20000442, IEE Proc. Electr. Power Appl. 147 (2000), 241-250. DOI10.1049/ip-epa:20000442
  11. J., Hu,, Y., He,, L., Xu,, B., Williams,, 10.1109/tie.2008.2006952, IEEE Trans. Ind. Electron. 56 (2009), 439-451. DOI10.1109/tie.2008.2006952
  12. J., Hu,, J., Zhu,, D., Dorrell,, 10.1049/iet-rpg.2013.0312, IET Renew. Power Gener. 8 (2014), 687-695. DOI10.1049/iet-rpg.2013.0312
  13. M., Kothare,, V., Balakrishnan,, M., Morari,, 10.1016/0005-1098(96)00063-5, Automatica 32 (1996), 10, 1361-1379. MR1420038DOI10.1016/0005-1098(96)00063-5
  14. M., Liserre,, R., Cardenas,, M., Molinas,, J., Rodriguez,, 10.1109/tie.2010.2103910, IEEE Trans. Ind. Electron. 58 (2011), 4, 1081-1095. DOI10.1109/tie.2010.2103910
  15. Y., Lu,, Y., Arkun,, 10.1016/s0005-1098(99)00176-4, Automatica 36 (2000), 4, 527-540. MR1828899DOI10.1016/s0005-1098(99)00176-4
  16. R., Pena,, J., Clare,, G., Asher,, 10.1049/ip-epa:19960288, IEE Proc. Electr. Power Appl. 143 (1996), 231-241. DOI10.1049/ip-epa:19960288
  17. N., Poursafar,, H., Taghirad,, M., Haeri,, 10.1049/iet-cta.2009.0650, IET Proc. Control Theory Appl. 4 (2010), 1922-1932. MR2760324DOI10.1049/iet-cta.2009.0650
  18. W., Qiao,, 10.1109/psce.2009.4840245, In: Proc. IEEE/PES Power Systems Conference and Exposition, Seattle 2009. DOI10.1109/psce.2009.4840245
  19. X., Sun,, B., Zhang,, X., Tang,, B., McLellan,, M., Höök,, 10.3390/en9120980, Energies 9 (2016), 980. DOI10.3390/en9120980
  20. F., Tahir,, M., Jaimoukha, I., 10.3182/20110828-6-it-1002.03112, IFAC Proc. Vol. 40 (2011), 1, 3672-3677. DOI10.3182/20110828-6-it-1002.03112
  21. I., Takahashi,, T., Noguchi,, 10.1109/tia.1986.4504799, IEEE Trans. Ind. Appl. (1986), 820-827. DOI10.1109/tia.1986.4504799
  22. B., Yang,, L., Jiang,, L., Wang,, W., Yao,, Q., Wu,, 10.1016/j.ijepes.2015.07.036, Int. J. Electr. Power Energy Syst. 74 (2016), 429-436. DOI10.1016/j.ijepes.2015.07.036
  23. B., Yang,, X., Zhang,, T., Yu,, H., Shu,, Z., Fang,, 10.1016/j.enconman.2016.10.062, Energy Convers. Manag. 133 (2017), 427-443. DOI10.1016/j.enconman.2016.10.062
  24. W., Yao,, J., Lin,, W., Jinyu,, W., Qinghua,, C., Shijie,, 10.1109/tcst.2014.2311852, IEEE Trans. Control Syst. Technol. 23 (2015), 27-37. DOI10.1109/tcst.2014.2311852
  25. S.-Y., Yu,, C., Bohm,, H., Chen,, F., Allgower,, 10.1109/acc.2010.5531520, In: Proc. Amer. Contr. Conf., Baltimore 2010. DOI10.1109/acc.2010.5531520
  26. D., Zhi,, L., Xu,, 10.1109/tec.2006.889549, IEEE Trans. Energy Convers. 22 (2007), 110-118. DOI10.1109/tec.2006.889549
  27. D., Zhi,, L., Xu,, B., Williams,, 10.1109/tpel.2009.2028139, IEEE Trans. Power Electron. 25 (2010), 341-351. DOI10.1109/tpel.2009.2028139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.