Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism

Chaoqing Jia; Jun Hu; Chongyang Lv; Yujing Shi

Kybernetika (2020)

  • Volume: 56, Issue: 1, page 35-56
  • ISSN: 0023-5954

Abstract

top
This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm.

How to cite

top

Jia, Chaoqing, et al. "Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism." Kybernetika 56.1 (2020): 35-56. <http://eudml.org/doc/296933>.

@article{Jia2020,
abstract = {This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm.},
author = {Jia, Chaoqing, Hu, Jun, Lv, Chongyang, Shi, Yujing},
journal = {Kybernetika},
keywords = {event-based communication protocol; fading measurements; stochastic coupling strength; nonlinear dynamical networks; monotonicity analysis},
language = {eng},
number = {1},
pages = {35-56},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism},
url = {http://eudml.org/doc/296933},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Jia, Chaoqing
AU - Hu, Jun
AU - Lv, Chongyang
AU - Shi, Yujing
TI - Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 35
EP - 56
AB - This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm.
LA - eng
KW - event-based communication protocol; fading measurements; stochastic coupling strength; nonlinear dynamical networks; monotonicity analysis
UR - http://eudml.org/doc/296933
ER -

References

top
  1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U., 10.1016/j.physrep.2005.10.009, Physics Reports 424 (2006), 4-5. MR2193621DOI10.1016/j.physrep.2005.10.009
  2. Calafiore, G., 10.1109/tsmca.2005.843383, IEEE Trans. Systems Man Cybernet. Part A-Systems and Humans 35 (2005), 189-197. DOI10.1109/tsmca.2005.843383
  3. Chen, W., Ding, D. R., Ge, X. H., Han, Q.-L., Wei, G. L., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. (2018), 1-11. DOI10.1109/tcyb.2018.2885567
  4. Chen, Y. G., Fei, S. M., Li, Y. M., 10.1109/tac.2016.2611559, IEEE Trans. Automat. Control 62 (2017), 3455-3460. MR3669465DOI10.1109/tac.2016.2611559
  5. Chen, Y. G., Wang, Z. D., Fei, S. M., Han, Q.-L., 10.1109/tac.2018.2847903, IEEE Trans. Automat. Control 64 (2019), 1257-1264. MR3922091DOI10.1109/tac.2018.2847903
  6. Ding, D. R., Han, Q.-L., Wang, Z. D., Ge, X. H., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI10.1109/tii.2019.2905295
  7. Ding, D. R., Wang, Z. D., Han, Q.-L., Wei, G. L., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 2372-2384. DOI10.1109/tcyb.2018.2827037
  8. Ge, X. H., Han, Q.-L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 1807-1819. DOI10.1109/tcyb.2016.2570860
  9. Ge, X. H., Han, Q.-L., Wang, Z. D., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 1148-1159. DOI10.1109/tcyb.2017.2789296
  10. Ge, X. H., Han, Q.-L., Wang, Z. D., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 171-183. DOI10.1109/tcyb.2017.2789296
  11. Geng, Z. Q., Wang, Z., Hu, H. X., Han, Y. M., Lin, X. Y., Zhang, Y. H., 10.1002/cjce.23319, Canad. J. Chemical Engrg. 97 (2019), 1129-1138. DOI10.1002/cjce.23319
  12. Hu, J., Wang, Z. D., Gao, H. J., 10.1016/j.automatica.2018.07.027, Automatica 97 (2018), 150-160. MR3857456DOI10.1016/j.automatica.2018.07.027
  13. Hu, J., Wang, Z. D., Liu, G.-P., Zhang, H. X., 10.1109/tnnls.2019.2927554, IEEE Trans. Neural Networks Learn. Systems (2019), 1-13. MR3819246DOI10.1109/tnnls.2019.2927554
  14. Hu, J., Wang, Z. D., Liu, S., Gao, H. J., 10.1016/j.automatica.2015.11.008, Automatica 64 (2016), 155-162. MR3433092DOI10.1016/j.automatica.2015.11.008
  15. Hu, J., Zhang, H. X., Yu, X. Y., Liu, H. J., Chen, D. Y., 10.1109/tsmc.2019.2919513, IEEE Trans. Systems Man Cybernet.: Systems (2019), 1-12. MR0591398DOI10.1109/tsmc.2019.2919513
  16. Hu, J., Zhang, P. P., Kao, Y. G., Liu, H. J., Chen, D. Y., 10.1016/j.amc.2019.124574, Applied Math. Comput. 362 (2019), 124574. MR3979274DOI10.1016/j.amc.2019.124574
  17. Huang, Y. F., Werner, S., Huang, J., Kashyap, N., Gupta, V., 10.1109/msp.2012.2187037, IEEE Signal Process. Magazine 29 (2012), 33-44. DOI10.1109/msp.2012.2187037
  18. Hu, J., Wang, Z. D., Alsaadi, F. E., Hayat, T., 10.1016/j.inffus.2017.03.003, Inform. Fusion 38 (2017), 74-83. DOI10.1016/j.inffus.2017.03.003
  19. Hu, J., Liu, G.-P., Zhang, H. X., Liu, H. J., 10.1016/j.ins.2019.09.050, Inform. Sci. 511 (2020), 265-283. MR4014308DOI10.1016/j.ins.2019.09.050
  20. Kurt, M. N., Yilmaz, Y., Wang, X. D., 10.1109/tifs.2019.2928207, IEEE Trans. Inform. Forensics Security 15 (2020) 800-815. DOI10.1109/tifs.2019.2928207
  21. Li, J. J., Wei, G. L., Ding, D. R., Liu, Y. R., 10.1016/j.neucom.2017.11.033, Neurocomputing 281 (2018), 20-26. DOI10.1016/j.neucom.2017.11.033
  22. Li, W. L., Jia, Y. M., Du, J. P., 10.1016/j.neucom.2016.08.095, Neurocomputing 219 (2017), 1-8. DOI10.1016/j.neucom.2016.08.095
  23. Li, W. L., Jia, Y. M., Du, J. P., 10.1016/j.dsp.2016.10.003, Digital Signal Process. 60 (2017), 211-219. MR3448842DOI10.1016/j.dsp.2016.10.003
  24. Li, X.-J., Yang, G.-H., 10.1109/tcyb.2015.2399334, IEEE Trans. Cybernet. 46 (2018), 171-180. DOI10.1109/tcyb.2015.2399334
  25. Liu, X. X., Su, X. J., Shi, P., Nguang, S. K., Shen, C., 10.1016/j.automatica.2018.12.006, Automatica 101 (2019), 365-376. MR3896573DOI10.1016/j.automatica.2018.12.006
  26. Manitz, J., Harbering, J., Schmidt, M., Kneib, T., Schobel, A., 10.1111/rssc.12176, J. Royal Statist. Soc. Series C - Applied Statistics 66 (2017), 521-536. MR3632340DOI10.1111/rssc.12176
  27. Mao, J. Y., Ding, D. R., Song, Y., Liu, Y. R., Alsaadi, F. E., 10.1016/j.sigpro.2016.12.004, Signal Process. 134 (2017), 158-165. DOI10.1016/j.sigpro.2016.12.004
  28. Mao, J. Y., Ding, D. R., Wei, G. L., Liu, H. J., 10.1080/00207721.2019.1586002, Int. J. Systems Sci. 50 (2019), 871-884. MR3929256DOI10.1080/00207721.2019.1586002
  29. Shen, B., Wang, Z. D., Qiao, H., 10.1109/tnnls.2016.2516030, IEEE Trans. Neural Networks Learn. Systems 28 (2017), 1152-1163. MR3721783DOI10.1109/tnnls.2016.2516030
  30. Shu, H. S., Zhang, S. J., Shen, B., Liu, Y. R., 10.1080/03081079.2015.1106732, Int. J. General Systems 45 (2016), 648-661. MR3504376DOI10.1080/03081079.2015.1106732
  31. Song, W. H., Wang, J. A., Wang, C. Y., Shan, J. Y., 10.1002/rnc.4456, Int. J. Robust Nonlinear Control 29 (2019), 1558-1576. MR3915150DOI10.1002/rnc.4456
  32. Sun, Y. C., Yang, G. H., 10.1016/j.ins.2019.03.058, Inform. Sci. 492 (2019), 1-12. MR3937356DOI10.1016/j.ins.2019.03.058
  33. Wang, F., Liang, J. L., Wang, Z. D., Liu, X. H., 10.1109/tcyb.2017.2716400, IEEE Trans. Cybernetics 46 (2017), 1877-1887. MR4017064DOI10.1109/tcyb.2017.2716400
  34. Wang, S. Y., Tian, X. G., Fang, H. J., 10.1016/j.jfranklin.2018.11.044, J. Franklin Inst. 356 (2019), 4076-4096. MR3957934DOI10.1016/j.jfranklin.2018.11.044
  35. Wen, C. B., Wang, Z. D., Liu, Q. Y., Alsaadi, F. E., 10.1109/tsmc.2016.2629464, IEEE Trans. Systems Man Cybernet.: Systems 48 (2016), 930-941. DOI10.1109/tsmc.2016.2629464
  36. Wu, X., Jiang, G. P., Wang, X. W., 10.1109/tcsii.2017.2767859, IEEE Trans. Circuits Systems II: Express Briefs 65 (2017), 1753-1757. DOI10.1109/tcsii.2017.2767859
  37. Wu, Z.-G., Xu, Z. W., Shi, P., Chen, M. Z. Q., Su, H. Y., 10.1109/tnnls.2018.2790982, IEEE Trans. Neural Networks Learn. Systems 29 (2018), 5111-5121. MR3875065DOI10.1109/tnnls.2018.2790982
  38. Yan, L., Zhang, S. J., Ding, D. R., Liu, Y. R., Alsaadi, F. E., 10.1016/j.neucom.2016.11.033, Neurocomputing 230 (2017), 23-29. DOI10.1016/j.neucom.2016.11.033
  39. Zhang, H. X., Hu, J., Liu, H. J., Yu, X. Y., Liu, F. Q., 10.1016/j.neucom.2018.07.086, Neurocomputing 346 (2019), 48-57. DOI10.1016/j.neucom.2018.07.086
  40. Zhang, H. X., Hu, J., Zou, L., Yu, X. Y., Wu, Z. H., 10.1080/03081079.2018.1445740, Int. J. General Systems 47 (2018), 506-521. MR3790532DOI10.1080/03081079.2018.1445740
  41. Zhang, X.-M., Han, Q.-L., 10.1109/tcyb.2015.2487420, IEEE Trans. Cybernet. 46 (2015), 2745-2757. DOI10.1109/tcyb.2015.2487420
  42. Zhang, X.-M., Han, Q.-L., Ge, X. H., Ding, D. R., Ding, L., Yue, D., Peng, C., 10.1109/jas.2019.1911651, IEEE/CAA J. Autom. Sinica (2019), 1-17. MR3841465DOI10.1109/jas.2019.1911651
  43. Zuo, Z. Y., Han, Q.-L., Ning, B. D., Ge, X. H., Zhang, X.-M., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 2322-2334. MR3932129DOI10.1109/tii.2018.2817248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.