Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism
Chaoqing Jia; Jun Hu; Chongyang Lv; Yujing Shi
Kybernetika (2020)
- Volume: 56, Issue: 1, page 35-56
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJia, Chaoqing, et al. "Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism." Kybernetika 56.1 (2020): 35-56. <http://eudml.org/doc/296933>.
@article{Jia2020,
abstract = {This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm.},
author = {Jia, Chaoqing, Hu, Jun, Lv, Chongyang, Shi, Yujing},
journal = {Kybernetika},
keywords = {event-based communication protocol; fading measurements; stochastic coupling strength; nonlinear dynamical networks; monotonicity analysis},
language = {eng},
number = {1},
pages = {35-56},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism},
url = {http://eudml.org/doc/296933},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Jia, Chaoqing
AU - Hu, Jun
AU - Lv, Chongyang
AU - Shi, Yujing
TI - Optimized state estimation for nonlinear dynamical networks subject to fading measurements and stochastic coupling strength: An event-triggered communication mechanism
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 35
EP - 56
AB - This paper is concerned with the design of event-based state estimation algorithm for nonlinear complex networks with fading measurements and stochastic coupling strength. The event-based communication protocol is employed to save energy and enhance the network transmission efficiency, where the changeable event-triggered threshold is adopted to adjust the data transmission frequency. The phenomenon of fading measurements is described by a series of random variables obeying certain probability distribution. The aim of the paper is to propose a new recursive event-based state estimation strategy such that, for the admissible linearization error, fading measurements and stochastic coupling strength, a minimum upper bound of estimation error covariance is given by designing the estimator gain. Furthermore, the monotonicity relationship between the trace of the upper bound of estimation error covariance and the fading probability is pointed out from the theoretical aspect. Finally, a simulation example is used to show the effectiveness of developed state estimation algorithm.
LA - eng
KW - event-based communication protocol; fading measurements; stochastic coupling strength; nonlinear dynamical networks; monotonicity analysis
UR - http://eudml.org/doc/296933
ER -
References
top- Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U., 10.1016/j.physrep.2005.10.009, Physics Reports 424 (2006), 4-5. MR2193621DOI10.1016/j.physrep.2005.10.009
- Calafiore, G., 10.1109/tsmca.2005.843383, IEEE Trans. Systems Man Cybernet. Part A-Systems and Humans 35 (2005), 189-197. DOI10.1109/tsmca.2005.843383
- Chen, W., Ding, D. R., Ge, X. H., Han, Q.-L., Wei, G. L., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. (2018), 1-11. DOI10.1109/tcyb.2018.2885567
- Chen, Y. G., Fei, S. M., Li, Y. M., 10.1109/tac.2016.2611559, IEEE Trans. Automat. Control 62 (2017), 3455-3460. MR3669465DOI10.1109/tac.2016.2611559
- Chen, Y. G., Wang, Z. D., Fei, S. M., Han, Q.-L., 10.1109/tac.2018.2847903, IEEE Trans. Automat. Control 64 (2019), 1257-1264. MR3922091DOI10.1109/tac.2018.2847903
- Ding, D. R., Han, Q.-L., Wang, Z. D., Ge, X. H., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI10.1109/tii.2019.2905295
- Ding, D. R., Wang, Z. D., Han, Q.-L., Wei, G. L., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernet. 49 (2019), 2372-2384. DOI10.1109/tcyb.2018.2827037
- Ge, X. H., Han, Q.-L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 1807-1819. DOI10.1109/tcyb.2016.2570860
- Ge, X. H., Han, Q.-L., Wang, Z. D., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 1148-1159. DOI10.1109/tcyb.2017.2789296
- Ge, X. H., Han, Q.-L., Wang, Z. D., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 171-183. DOI10.1109/tcyb.2017.2789296
- Geng, Z. Q., Wang, Z., Hu, H. X., Han, Y. M., Lin, X. Y., Zhang, Y. H., 10.1002/cjce.23319, Canad. J. Chemical Engrg. 97 (2019), 1129-1138. DOI10.1002/cjce.23319
- Hu, J., Wang, Z. D., Gao, H. J., 10.1016/j.automatica.2018.07.027, Automatica 97 (2018), 150-160. MR3857456DOI10.1016/j.automatica.2018.07.027
- Hu, J., Wang, Z. D., Liu, G.-P., Zhang, H. X., 10.1109/tnnls.2019.2927554, IEEE Trans. Neural Networks Learn. Systems (2019), 1-13. MR3819246DOI10.1109/tnnls.2019.2927554
- Hu, J., Wang, Z. D., Liu, S., Gao, H. J., 10.1016/j.automatica.2015.11.008, Automatica 64 (2016), 155-162. MR3433092DOI10.1016/j.automatica.2015.11.008
- Hu, J., Zhang, H. X., Yu, X. Y., Liu, H. J., Chen, D. Y., 10.1109/tsmc.2019.2919513, IEEE Trans. Systems Man Cybernet.: Systems (2019), 1-12. MR0591398DOI10.1109/tsmc.2019.2919513
- Hu, J., Zhang, P. P., Kao, Y. G., Liu, H. J., Chen, D. Y., 10.1016/j.amc.2019.124574, Applied Math. Comput. 362 (2019), 124574. MR3979274DOI10.1016/j.amc.2019.124574
- Huang, Y. F., Werner, S., Huang, J., Kashyap, N., Gupta, V., 10.1109/msp.2012.2187037, IEEE Signal Process. Magazine 29 (2012), 33-44. DOI10.1109/msp.2012.2187037
- Hu, J., Wang, Z. D., Alsaadi, F. E., Hayat, T., 10.1016/j.inffus.2017.03.003, Inform. Fusion 38 (2017), 74-83. DOI10.1016/j.inffus.2017.03.003
- Hu, J., Liu, G.-P., Zhang, H. X., Liu, H. J., 10.1016/j.ins.2019.09.050, Inform. Sci. 511 (2020), 265-283. MR4014308DOI10.1016/j.ins.2019.09.050
- Kurt, M. N., Yilmaz, Y., Wang, X. D., 10.1109/tifs.2019.2928207, IEEE Trans. Inform. Forensics Security 15 (2020) 800-815. DOI10.1109/tifs.2019.2928207
- Li, J. J., Wei, G. L., Ding, D. R., Liu, Y. R., 10.1016/j.neucom.2017.11.033, Neurocomputing 281 (2018), 20-26. DOI10.1016/j.neucom.2017.11.033
- Li, W. L., Jia, Y. M., Du, J. P., 10.1016/j.neucom.2016.08.095, Neurocomputing 219 (2017), 1-8. DOI10.1016/j.neucom.2016.08.095
- Li, W. L., Jia, Y. M., Du, J. P., 10.1016/j.dsp.2016.10.003, Digital Signal Process. 60 (2017), 211-219. MR3448842DOI10.1016/j.dsp.2016.10.003
- Li, X.-J., Yang, G.-H., 10.1109/tcyb.2015.2399334, IEEE Trans. Cybernet. 46 (2018), 171-180. DOI10.1109/tcyb.2015.2399334
- Liu, X. X., Su, X. J., Shi, P., Nguang, S. K., Shen, C., 10.1016/j.automatica.2018.12.006, Automatica 101 (2019), 365-376. MR3896573DOI10.1016/j.automatica.2018.12.006
- Manitz, J., Harbering, J., Schmidt, M., Kneib, T., Schobel, A., 10.1111/rssc.12176, J. Royal Statist. Soc. Series C - Applied Statistics 66 (2017), 521-536. MR3632340DOI10.1111/rssc.12176
- Mao, J. Y., Ding, D. R., Song, Y., Liu, Y. R., Alsaadi, F. E., 10.1016/j.sigpro.2016.12.004, Signal Process. 134 (2017), 158-165. DOI10.1016/j.sigpro.2016.12.004
- Mao, J. Y., Ding, D. R., Wei, G. L., Liu, H. J., 10.1080/00207721.2019.1586002, Int. J. Systems Sci. 50 (2019), 871-884. MR3929256DOI10.1080/00207721.2019.1586002
- Shen, B., Wang, Z. D., Qiao, H., 10.1109/tnnls.2016.2516030, IEEE Trans. Neural Networks Learn. Systems 28 (2017), 1152-1163. MR3721783DOI10.1109/tnnls.2016.2516030
- Shu, H. S., Zhang, S. J., Shen, B., Liu, Y. R., 10.1080/03081079.2015.1106732, Int. J. General Systems 45 (2016), 648-661. MR3504376DOI10.1080/03081079.2015.1106732
- Song, W. H., Wang, J. A., Wang, C. Y., Shan, J. Y., 10.1002/rnc.4456, Int. J. Robust Nonlinear Control 29 (2019), 1558-1576. MR3915150DOI10.1002/rnc.4456
- Sun, Y. C., Yang, G. H., 10.1016/j.ins.2019.03.058, Inform. Sci. 492 (2019), 1-12. MR3937356DOI10.1016/j.ins.2019.03.058
- Wang, F., Liang, J. L., Wang, Z. D., Liu, X. H., 10.1109/tcyb.2017.2716400, IEEE Trans. Cybernetics 46 (2017), 1877-1887. MR4017064DOI10.1109/tcyb.2017.2716400
- Wang, S. Y., Tian, X. G., Fang, H. J., 10.1016/j.jfranklin.2018.11.044, J. Franklin Inst. 356 (2019), 4076-4096. MR3957934DOI10.1016/j.jfranklin.2018.11.044
- Wen, C. B., Wang, Z. D., Liu, Q. Y., Alsaadi, F. E., 10.1109/tsmc.2016.2629464, IEEE Trans. Systems Man Cybernet.: Systems 48 (2016), 930-941. DOI10.1109/tsmc.2016.2629464
- Wu, X., Jiang, G. P., Wang, X. W., 10.1109/tcsii.2017.2767859, IEEE Trans. Circuits Systems II: Express Briefs 65 (2017), 1753-1757. DOI10.1109/tcsii.2017.2767859
- Wu, Z.-G., Xu, Z. W., Shi, P., Chen, M. Z. Q., Su, H. Y., 10.1109/tnnls.2018.2790982, IEEE Trans. Neural Networks Learn. Systems 29 (2018), 5111-5121. MR3875065DOI10.1109/tnnls.2018.2790982
- Yan, L., Zhang, S. J., Ding, D. R., Liu, Y. R., Alsaadi, F. E., 10.1016/j.neucom.2016.11.033, Neurocomputing 230 (2017), 23-29. DOI10.1016/j.neucom.2016.11.033
- Zhang, H. X., Hu, J., Liu, H. J., Yu, X. Y., Liu, F. Q., 10.1016/j.neucom.2018.07.086, Neurocomputing 346 (2019), 48-57. DOI10.1016/j.neucom.2018.07.086
- Zhang, H. X., Hu, J., Zou, L., Yu, X. Y., Wu, Z. H., 10.1080/03081079.2018.1445740, Int. J. General Systems 47 (2018), 506-521. MR3790532DOI10.1080/03081079.2018.1445740
- Zhang, X.-M., Han, Q.-L., 10.1109/tcyb.2015.2487420, IEEE Trans. Cybernet. 46 (2015), 2745-2757. DOI10.1109/tcyb.2015.2487420
- Zhang, X.-M., Han, Q.-L., Ge, X. H., Ding, D. R., Ding, L., Yue, D., Peng, C., 10.1109/jas.2019.1911651, IEEE/CAA J. Autom. Sinica (2019), 1-17. MR3841465DOI10.1109/jas.2019.1911651
- Zuo, Z. Y., Han, Q.-L., Ning, B. D., Ge, X. H., Zhang, X.-M., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 2322-2334. MR3932129DOI10.1109/tii.2018.2817248
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.