Coleman automorphisms of finite groups with a self-centralizing normal subgroup

Jinke Hai

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 1197-1204
  • ISSN: 0011-4642

Abstract

top
Let G be a finite group with a normal subgroup N such that C G ( N ) N . It is shown that under some conditions, Coleman automorphisms of G are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.

How to cite

top

Hai, Jinke. "Coleman automorphisms of finite groups with a self-centralizing normal subgroup." Czechoslovak Mathematical Journal 70.4 (2020): 1197-1204. <http://eudml.org/doc/296941>.

@article{Hai2020,
abstract = {Let $G$ be a finite group with a normal subgroup $N$ such that $C_\{G\}(N)\le N$. It is shown that under some conditions, Coleman automorphisms of $G$ are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.},
author = {Hai, Jinke},
journal = {Czechoslovak Mathematical Journal},
keywords = {Coleman automorphism; integral group ring; the normalizer property},
language = {eng},
number = {4},
pages = {1197-1204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coleman automorphisms of finite groups with a self-centralizing normal subgroup},
url = {http://eudml.org/doc/296941},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Hai, Jinke
TI - Coleman automorphisms of finite groups with a self-centralizing normal subgroup
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1197
EP - 1204
AB - Let $G$ be a finite group with a normal subgroup $N$ such that $C_{G}(N)\le N$. It is shown that under some conditions, Coleman automorphisms of $G$ are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.
LA - eng
KW - Coleman automorphism; integral group ring; the normalizer property
UR - http://eudml.org/doc/296941
ER -

References

top
  1. Coleman, D. B., 10.1090/S0002-9939-1964-0165015-8, Proc. Am. Math. Soc. 15 (1964), 511-514. (1964) Zbl0132.27501MR0165015DOI10.1090/S0002-9939-1964-0165015-8
  2. Hai, J., Ge, S., He, W., 10.1142/S0219498817500256, J. Algebra Appl. 16 (2017), Article ID 1750025, 11 pages. (2017) Zbl1388.20008MR3608412DOI10.1142/S0219498817500256
  3. Hai, J., Guo, J., 10.1080/00927872.2016.1175613, Commun. Algebra 45 (2017), 1278-1283. (2017) Zbl1372.20007MR3573379DOI10.1080/00927872.2016.1175613
  4. Hai, J., Li, Z., 10.1142/S0219498813501107, J. Algebra Appl. 13 (2014), Article ID 1350110, 8 pages. (2014) Zbl1302.20028MR3125878DOI10.1142/S0219498813501107
  5. Hertweck, M., 10.2307/3062112, Ann. Math. (2) 154 (2001), 115-138. (2001) Zbl0990.20002MR1847590DOI10.2307/3062112
  6. Hertweck, M., 10.1016/S0022-4049(00)00167-5, J. Pure Appl. Algebra 163 (2001), 259-276. (2001) Zbl0987.16015MR1852119DOI10.1016/S0022-4049(00)00167-5
  7. Hertweck, M., Jespers, E., 10.1515/JGT.2008.068, J. Group Theory 12 (2009), 157-169. (2009) Zbl1168.16017MR2488146DOI10.1515/JGT.2008.068
  8. Hertweck, M., Kimmerle, W., 10.1007/s002090100318, Math. Z. 242 (2002), 203-215. (2002) Zbl1047.20020MR1980619DOI10.1007/s002090100318
  9. Huppert, B., 10.1007/978-3-642-64981-3, Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German. (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
  10. Jackowski, S., Marciniak, Z., 10.1016/0022-4049(87)90028-4, J. Pure Appl. Algebra 44 (1987), 241-250. (1987) Zbl0624.20024MR0885108DOI10.1016/0022-4049(87)90028-4
  11. Jespers, E., Juriaans, S. O., Miranda, J. M. de, Rogerio, J. R., 10.1006/jabr.2001.8724, J. Algebra 247 (2002), 24-36. (2002) Zbl1063.16036MR1873381DOI10.1006/jabr.2001.8724
  12. Juriaans, S. O., Miranda, J. M. de, Robério, J. R., 10.1081/AGB-120029897, Commun. Algebra 32 (2004), 1705-1714. (2004) Zbl1072.20030MR2099696DOI10.1081/AGB-120029897
  13. Li, Y., 10.1016/S0021-8693(02)00102-3, J. Algebra 256 (2002), 343-351. (2002) Zbl1017.16023MR1939109DOI10.1016/S0021-8693(02)00102-3
  14. Marciniak, Z. S., Roggenkamp, K. W., 10.1007/978-94-010-0814-3_8, Algebra - Representation Theory NATO Sci. Ser. II Math. Phys. Chem. 28. Kluwer Academic, Dordrecht (2001), 159-188. (2001) Zbl0989.20002MR1858036DOI10.1007/978-94-010-0814-3_8
  15. Lobão, T. Petit, Milies, C. Polcino, 10.1016/S0021-8693(02)00156-4, J. Algebra 256 (2002), 1-6. (2002) Zbl1017.16024MR1936875DOI10.1016/S0021-8693(02)00156-4
  16. Lobão, T. Petit, Sehgal, S. K., 10.1081/AGB-120021903, Commun. Algebra 31 (2003), 2971-2983. (2003) Zbl1039.16034MR1986226DOI10.1081/AGB-120021903
  17. Rose, J. S., A Course on Group Theory, Cambridge University Press, Cambridge (1978). (1978) Zbl0371.20001MR0498810
  18. Sehgal, S. K., Units in Integral Group Rings, Pitman Monographs and Surveys in Pure and Applied Mathematics 69. Longman Scientific & Technical, Harlow (1993). (1993) Zbl0803.16022MR1242557
  19. Antwerpen, A. Van, 10.1016/j.jpaa.2017.12.013, J. Pure Appl. Algebra 222 (2018), 3379-3394. (2018) Zbl06881278MR3806731DOI10.1016/j.jpaa.2017.12.013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.