Coleman automorphisms of finite groups with a self-centralizing normal subgroup
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 1197-1204
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHai, Jinke. "Coleman automorphisms of finite groups with a self-centralizing normal subgroup." Czechoslovak Mathematical Journal 70.4 (2020): 1197-1204. <http://eudml.org/doc/296941>.
@article{Hai2020,
abstract = {Let $G$ be a finite group with a normal subgroup $N$ such that $C_\{G\}(N)\le N$. It is shown that under some conditions, Coleman automorphisms of $G$ are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.},
author = {Hai, Jinke},
journal = {Czechoslovak Mathematical Journal},
keywords = {Coleman automorphism; integral group ring; the normalizer property},
language = {eng},
number = {4},
pages = {1197-1204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coleman automorphisms of finite groups with a self-centralizing normal subgroup},
url = {http://eudml.org/doc/296941},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Hai, Jinke
TI - Coleman automorphisms of finite groups with a self-centralizing normal subgroup
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1197
EP - 1204
AB - Let $G$ be a finite group with a normal subgroup $N$ such that $C_{G}(N)\le N$. It is shown that under some conditions, Coleman automorphisms of $G$ are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.
LA - eng
KW - Coleman automorphism; integral group ring; the normalizer property
UR - http://eudml.org/doc/296941
ER -
References
top- Coleman, D. B., 10.1090/S0002-9939-1964-0165015-8, Proc. Am. Math. Soc. 15 (1964), 511-514. (1964) Zbl0132.27501MR0165015DOI10.1090/S0002-9939-1964-0165015-8
- Hai, J., Ge, S., He, W., 10.1142/S0219498817500256, J. Algebra Appl. 16 (2017), Article ID 1750025, 11 pages. (2017) Zbl1388.20008MR3608412DOI10.1142/S0219498817500256
- Hai, J., Guo, J., 10.1080/00927872.2016.1175613, Commun. Algebra 45 (2017), 1278-1283. (2017) Zbl1372.20007MR3573379DOI10.1080/00927872.2016.1175613
- Hai, J., Li, Z., 10.1142/S0219498813501107, J. Algebra Appl. 13 (2014), Article ID 1350110, 8 pages. (2014) Zbl1302.20028MR3125878DOI10.1142/S0219498813501107
- Hertweck, M., 10.2307/3062112, Ann. Math. (2) 154 (2001), 115-138. (2001) Zbl0990.20002MR1847590DOI10.2307/3062112
- Hertweck, M., 10.1016/S0022-4049(00)00167-5, J. Pure Appl. Algebra 163 (2001), 259-276. (2001) Zbl0987.16015MR1852119DOI10.1016/S0022-4049(00)00167-5
- Hertweck, M., Jespers, E., 10.1515/JGT.2008.068, J. Group Theory 12 (2009), 157-169. (2009) Zbl1168.16017MR2488146DOI10.1515/JGT.2008.068
- Hertweck, M., Kimmerle, W., 10.1007/s002090100318, Math. Z. 242 (2002), 203-215. (2002) Zbl1047.20020MR1980619DOI10.1007/s002090100318
- Huppert, B., 10.1007/978-3-642-64981-3, Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German. (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Jackowski, S., Marciniak, Z., 10.1016/0022-4049(87)90028-4, J. Pure Appl. Algebra 44 (1987), 241-250. (1987) Zbl0624.20024MR0885108DOI10.1016/0022-4049(87)90028-4
- Jespers, E., Juriaans, S. O., Miranda, J. M. de, Rogerio, J. R., 10.1006/jabr.2001.8724, J. Algebra 247 (2002), 24-36. (2002) Zbl1063.16036MR1873381DOI10.1006/jabr.2001.8724
- Juriaans, S. O., Miranda, J. M. de, Robério, J. R., 10.1081/AGB-120029897, Commun. Algebra 32 (2004), 1705-1714. (2004) Zbl1072.20030MR2099696DOI10.1081/AGB-120029897
- Li, Y., 10.1016/S0021-8693(02)00102-3, J. Algebra 256 (2002), 343-351. (2002) Zbl1017.16023MR1939109DOI10.1016/S0021-8693(02)00102-3
- Marciniak, Z. S., Roggenkamp, K. W., 10.1007/978-94-010-0814-3_8, Algebra - Representation Theory NATO Sci. Ser. II Math. Phys. Chem. 28. Kluwer Academic, Dordrecht (2001), 159-188. (2001) Zbl0989.20002MR1858036DOI10.1007/978-94-010-0814-3_8
- Lobão, T. Petit, Milies, C. Polcino, 10.1016/S0021-8693(02)00156-4, J. Algebra 256 (2002), 1-6. (2002) Zbl1017.16024MR1936875DOI10.1016/S0021-8693(02)00156-4
- Lobão, T. Petit, Sehgal, S. K., 10.1081/AGB-120021903, Commun. Algebra 31 (2003), 2971-2983. (2003) Zbl1039.16034MR1986226DOI10.1081/AGB-120021903
- Rose, J. S., A Course on Group Theory, Cambridge University Press, Cambridge (1978). (1978) Zbl0371.20001MR0498810
- Sehgal, S. K., Units in Integral Group Rings, Pitman Monographs and Surveys in Pure and Applied Mathematics 69. Longman Scientific & Technical, Harlow (1993). (1993) Zbl0803.16022MR1242557
- Antwerpen, A. Van, 10.1016/j.jpaa.2017.12.013, J. Pure Appl. Algebra 222 (2018), 3379-3394. (2018) Zbl06881278MR3806731DOI10.1016/j.jpaa.2017.12.013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.