On sectional Newtonian graphs
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 605-629
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFan, Zening, and Zhao, Suo. "On sectional Newtonian graphs." Czechoslovak Mathematical Journal 70.3 (2020): 605-629. <http://eudml.org/doc/296949>.
@article{Fan2020,
abstract = {In this paper, we introduce the so-called sectional Newtonian graphs for univariate complex polynomials, and study some properties of those graphs. In particular, we list all possible sectional Newtonian graphs when the degrees of the polynomials are less than five, and also show that every stable gradient graph can be realized as a polynomial sectional Newtonian graph.},
author = {Fan, Zening, Zhao, Suo},
journal = {Czechoslovak Mathematical Journal},
keywords = {sectional Newtonian graph; level set; partition},
language = {eng},
number = {3},
pages = {605-629},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On sectional Newtonian graphs},
url = {http://eudml.org/doc/296949},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Fan, Zening
AU - Zhao, Suo
TI - On sectional Newtonian graphs
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 605
EP - 629
AB - In this paper, we introduce the so-called sectional Newtonian graphs for univariate complex polynomials, and study some properties of those graphs. In particular, we list all possible sectional Newtonian graphs when the degrees of the polynomials are less than five, and also show that every stable gradient graph can be realized as a polynomial sectional Newtonian graph.
LA - eng
KW - sectional Newtonian graph; level set; partition
UR - http://eudml.org/doc/296949
ER -
References
top- Duren, P., 10.1017/CBO9780511546600, Cambridge Tracts in Mathematics 156. Cambridge University Press, Cambridge (2004). (2004) Zbl1055.31001MR2048384DOI10.1017/CBO9780511546600
- Griffths, P., Harris, J., 10.1002/9781118032527, Wiley Classics Library. John Wiley & Sons, New York (1994). (1994) Zbl0836.14001MR1288523DOI10.1002/9781118032527
- Huybrechts, D., 10.1007/b137952, Universitext. Springer, Berlin (2005). (2005) Zbl1055.14001MR2093043DOI10.1007/b137952
- Jongen, H. T., Jonker, P., Twilt, F., 10.1016/0095-8956(91)90041-H, J. Comb. Theory, Ser. B 51 (1991), 256-270. (1991) Zbl0725.05069MR1099075DOI10.1016/0095-8956(91)90041-H
- Kahn, J., 10.1016/0885-064X(91)90029-W, J. Complexity 7 (1991), 425-442. (1991) Zbl0773.05055MR1143970DOI10.1016/0885-064X(91)90029-W
- Kozen, D., Stefánsson, K., 10.1006/jsco.1997.0118, J. Symb. Comput. 24 (1997), 125-136. (1997) Zbl0885.65055MR1476256DOI10.1006/jsco.1997.0118
- Shub, M., Tischler, D., Williams, R. F., 10.1137/0519018, SIAM J. Math. Anal. 19 (1988), 246-256. (1988) Zbl0653.58013MR0924558DOI10.1137/0519018
- Smale, S., 10.1090/S0273-0979-1985-15391-1, Bull. Am. Math. Soc., New Ser. 13 (1985), 87-121. (1985) Zbl0592.65032MR0799791DOI10.1090/S0273-0979-1985-15391-1
- Stefánsson, K., Newtonian Graphs, Riemann Surfaces and Computation. PhD Thesis, Cornell University, Ann Arbor (1995). (1995) MR2693724
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.