Exponent of class group of certain imaginary quadratic fields

Kalyan Chakraborty; Azizul Hoque

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 1167-1178
  • ISSN: 0011-4642

Abstract

top
Let n > 1 be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form x 2 - 2 y n whose ideal class group has an element of order n . This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.

How to cite

top

Chakraborty, Kalyan, and Hoque, Azizul. "Exponent of class group of certain imaginary quadratic fields." Czechoslovak Mathematical Journal 70.4 (2020): 1167-1178. <http://eudml.org/doc/296954>.

@article{Chakraborty2020,
abstract = {Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\mathbb \{Q\} \bigl (\sqrt\{x^2-2y^n\} \bigr )$ whose ideal class group has an element of order $n$. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.},
author = {Chakraborty, Kalyan, Hoque, Azizul},
journal = {Czechoslovak Mathematical Journal},
keywords = {quadratic field; discriminant; class group; Wada's conjecture},
language = {eng},
number = {4},
pages = {1167-1178},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exponent of class group of certain imaginary quadratic fields},
url = {http://eudml.org/doc/296954},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Chakraborty, Kalyan
AU - Hoque, Azizul
TI - Exponent of class group of certain imaginary quadratic fields
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1167
EP - 1178
AB - Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\mathbb {Q} \bigl (\sqrt{x^2-2y^n} \bigr )$ whose ideal class group has an element of order $n$. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.
LA - eng
KW - quadratic field; discriminant; class group; Wada's conjecture
UR - http://eudml.org/doc/296954
ER -

References

top
  1. Ankeny, N. C., Chowla, S., 10.2140/pjm.1955.5.321, Pac. J. Math. 5 (1955), 321-324. (1955) Zbl0065.02402MR0085301DOI10.2140/pjm.1955.5.321
  2. Chakraborty, K., Hoque, A., Class groups of imaginary quadratic fields of 3-rank at least 2, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 179-183. (2018) Zbl1424.11157MR3849201
  3. Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P. P., 10.1016/j.jnt.2017.09.007, J. Number Theory 185 (2018), 339-348. (2018) Zbl06820888MR3734353DOI10.1016/j.jnt.2017.09.007
  4. Chakraborty, K., Hoque, A., Sharma, R., 10.1007/978-981-13-3013-1_12, Advances in Mathematical Inequalities and Applications Trends in Mathematics. Birkhäuser, Singapore (2018), 247-264. (2018) Zbl1418.11144MR3969663DOI10.1007/978-981-13-3013-1_12
  5. Cohn, J. H. E., 10.1090/S0002-9939-01-06255-4, Proc. Am. Math. Soc. 130 (2002), 1275-1277. (2002) Zbl1113.11063MR1879947DOI10.1090/S0002-9939-01-06255-4
  6. Gross, B. H., Rohrlich, D. E., 10.1007/BF01403161, Invent. Math. 44 (1978), 201-224. (1978) Zbl0369.14011MR491708DOI10.1007/BF01403161
  7. Hoque, A., Chakraborty, K., Divisibility of class numbers of certain families of quadratic fields, J. Ramanujan Math. Soc. 34 (2019), 281-289. (2019) MR4010381
  8. Hoque, A., Saikia, H. K., 10.1007/s40324-016-0065-1, SeMA J. 73 (2016), 213-217. (2016) Zbl1348.11087MR3542827DOI10.1007/s40324-016-0065-1
  9. Ishii, K., 10.3792/pjaa.87.142, Proc. Japan Acad., Ser. A 87 (2011), 142-143. (2011) Zbl1262.11093MR2843095DOI10.3792/pjaa.87.142
  10. Ito, A., 10.3792/pjaa.87.151, Proc. Japan Acad., Ser. A 87 (2011), 151-155. (2011) Zbl1247.11139MR2863357DOI10.3792/pjaa.87.151
  11. Ito, A., 10.1017/S0017089511000012, Glasg. Math. J. 53 (2011), 379-389. (2011) Zbl1259.11102MR2783167DOI10.1017/S0017089511000012
  12. Ito, A., 10.1007/s12188-015-0106-1, Abh. Math. Semin. Univ. Hamb. 85 (2015), 1-21. (2015) Zbl1400.11145MR3334456DOI10.1007/s12188-015-0106-1
  13. Kishi, Y., 10.1017/S001708950800462X, Glasg. Math. J. 51 (2009), 187-191 corrigendum ibid. 52 2010 207-208. (2009) Zbl1211.11124MR2471686DOI10.1017/S001708950800462X
  14. Louboutin, S. R., 10.1090/S0002-9939-09-10021-7, Proc. Am. Math. Soc. 137 (2009), 4025-4028. (2009) Zbl1269.11111MR2538563DOI10.1090/S0002-9939-09-10021-7
  15. Murty, M. R., 10.1090/conm/210, Number Theory. Proceedings of the International Conference on Discrete Mathematics and Number Theory Contemporary Mathematics 210. American Mathematical Society, Providence (1998), 85-95. (1998) Zbl0893.11043MR1478486DOI10.1090/conm/210
  16. Murty, M. R., 10.1007/978-1-4613-0305-3_15, Topics in Number Theory Mathematics and Its Applications 467. Kluwer Academic Publishers, Dordrecht (1999), 229-239. (1999) Zbl0993.11059MR1691322DOI10.1007/978-1-4613-0305-3_15
  17. Nagell, T., 10.1007/BF02940586, Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German 9999JFM99999 48.0170.03. (1922) MR3069394DOI10.1007/BF02940586
  18. Soundararajan, K., 10.1112/S0024610700008887, J. Lond. Math. Soc., II. Ser. 61 (2000), 681-690. (2000) Zbl1018.11054MR1766097DOI10.1112/S0024610700008887
  19. Group, The PARI, PARI/GP, version 2.9.0, University Bordeaux (2016), Available at http://pari.math.u-bordeaux.fr. (2016) 
  20. Wada, H., 10.3792/pja/1195520300, Proc. Japan Acad. 46 (1970), 401-403. (1970) Zbl0209.35604MR0366866DOI10.3792/pja/1195520300
  21. Zhu, M., Wang, T., 10.1017/S0017089511000486, Glasg. Math. J. 54 (2012), 149-154. (2012) Zbl1269.11107MR2862392DOI10.1017/S0017089511000486

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.