Exponent of class group of certain imaginary quadratic fields
Kalyan Chakraborty; Azizul Hoque
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 1167-1178
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChakraborty, Kalyan, and Hoque, Azizul. "Exponent of class group of certain imaginary quadratic fields." Czechoslovak Mathematical Journal 70.4 (2020): 1167-1178. <http://eudml.org/doc/296954>.
@article{Chakraborty2020,
abstract = {Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\mathbb \{Q\} \bigl (\sqrt\{x^2-2y^n\} \bigr )$ whose ideal class group has an element of order $n$. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.},
author = {Chakraborty, Kalyan, Hoque, Azizul},
journal = {Czechoslovak Mathematical Journal},
keywords = {quadratic field; discriminant; class group; Wada's conjecture},
language = {eng},
number = {4},
pages = {1167-1178},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exponent of class group of certain imaginary quadratic fields},
url = {http://eudml.org/doc/296954},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Chakraborty, Kalyan
AU - Hoque, Azizul
TI - Exponent of class group of certain imaginary quadratic fields
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1167
EP - 1178
AB - Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\mathbb {Q} \bigl (\sqrt{x^2-2y^n} \bigr )$ whose ideal class group has an element of order $n$. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.
LA - eng
KW - quadratic field; discriminant; class group; Wada's conjecture
UR - http://eudml.org/doc/296954
ER -
References
top- Ankeny, N. C., Chowla, S., 10.2140/pjm.1955.5.321, Pac. J. Math. 5 (1955), 321-324. (1955) Zbl0065.02402MR0085301DOI10.2140/pjm.1955.5.321
- Chakraborty, K., Hoque, A., Class groups of imaginary quadratic fields of 3-rank at least 2, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 179-183. (2018) Zbl1424.11157MR3849201
- Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P. P., 10.1016/j.jnt.2017.09.007, J. Number Theory 185 (2018), 339-348. (2018) Zbl06820888MR3734353DOI10.1016/j.jnt.2017.09.007
- Chakraborty, K., Hoque, A., Sharma, R., 10.1007/978-981-13-3013-1_12, Advances in Mathematical Inequalities and Applications Trends in Mathematics. Birkhäuser, Singapore (2018), 247-264. (2018) Zbl1418.11144MR3969663DOI10.1007/978-981-13-3013-1_12
- Cohn, J. H. E., 10.1090/S0002-9939-01-06255-4, Proc. Am. Math. Soc. 130 (2002), 1275-1277. (2002) Zbl1113.11063MR1879947DOI10.1090/S0002-9939-01-06255-4
- Gross, B. H., Rohrlich, D. E., 10.1007/BF01403161, Invent. Math. 44 (1978), 201-224. (1978) Zbl0369.14011MR491708DOI10.1007/BF01403161
- Hoque, A., Chakraborty, K., Divisibility of class numbers of certain families of quadratic fields, J. Ramanujan Math. Soc. 34 (2019), 281-289. (2019) MR4010381
- Hoque, A., Saikia, H. K., 10.1007/s40324-016-0065-1, SeMA J. 73 (2016), 213-217. (2016) Zbl1348.11087MR3542827DOI10.1007/s40324-016-0065-1
- Ishii, K., 10.3792/pjaa.87.142, Proc. Japan Acad., Ser. A 87 (2011), 142-143. (2011) Zbl1262.11093MR2843095DOI10.3792/pjaa.87.142
- Ito, A., 10.3792/pjaa.87.151, Proc. Japan Acad., Ser. A 87 (2011), 151-155. (2011) Zbl1247.11139MR2863357DOI10.3792/pjaa.87.151
- Ito, A., 10.1017/S0017089511000012, Glasg. Math. J. 53 (2011), 379-389. (2011) Zbl1259.11102MR2783167DOI10.1017/S0017089511000012
- Ito, A., 10.1007/s12188-015-0106-1, Abh. Math. Semin. Univ. Hamb. 85 (2015), 1-21. (2015) Zbl1400.11145MR3334456DOI10.1007/s12188-015-0106-1
- Kishi, Y., 10.1017/S001708950800462X, Glasg. Math. J. 51 (2009), 187-191 corrigendum ibid. 52 2010 207-208. (2009) Zbl1211.11124MR2471686DOI10.1017/S001708950800462X
- Louboutin, S. R., 10.1090/S0002-9939-09-10021-7, Proc. Am. Math. Soc. 137 (2009), 4025-4028. (2009) Zbl1269.11111MR2538563DOI10.1090/S0002-9939-09-10021-7
- Murty, M. R., 10.1090/conm/210, Number Theory. Proceedings of the International Conference on Discrete Mathematics and Number Theory Contemporary Mathematics 210. American Mathematical Society, Providence (1998), 85-95. (1998) Zbl0893.11043MR1478486DOI10.1090/conm/210
- Murty, M. R., 10.1007/978-1-4613-0305-3_15, Topics in Number Theory Mathematics and Its Applications 467. Kluwer Academic Publishers, Dordrecht (1999), 229-239. (1999) Zbl0993.11059MR1691322DOI10.1007/978-1-4613-0305-3_15
- Nagell, T., 10.1007/BF02940586, Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German 9999JFM99999 48.0170.03. (1922) MR3069394DOI10.1007/BF02940586
- Soundararajan, K., 10.1112/S0024610700008887, J. Lond. Math. Soc., II. Ser. 61 (2000), 681-690. (2000) Zbl1018.11054MR1766097DOI10.1112/S0024610700008887
- Group, The PARI, PARI/GP, version 2.9.0, University Bordeaux (2016), Available at http://pari.math.u-bordeaux.fr. (2016)
- Wada, H., 10.3792/pja/1195520300, Proc. Japan Acad. 46 (1970), 401-403. (1970) Zbl0209.35604MR0366866DOI10.3792/pja/1195520300
- Zhu, M., Wang, T., 10.1017/S0017089511000486, Glasg. Math. J. 54 (2012), 149-154. (2012) Zbl1269.11107MR2862392DOI10.1017/S0017089511000486
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.