Some module cohomological properties of Banach algebras

Elham Ilka; Amin Mahmoodi; Abasalt Bodaghi

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 2, page 127-140
  • ISSN: 0862-7959

Abstract

top
We find some relations between module biprojectivity and module biflatness of Banach algebras 𝒜 and and their projective tensor product 𝒜 ^ . For some semigroups S , we study module biprojectivity and module biflatness of semigroup algebras l 1 ( S ) .

How to cite

top

Ilka, Elham, Mahmoodi, Amin, and Bodaghi, Abasalt. "Some module cohomological properties of Banach algebras." Mathematica Bohemica 145.2 (2020): 127-140. <http://eudml.org/doc/296962>.

@article{Ilka2020,
abstract = {We find some relations between module biprojectivity and module biflatness of Banach algebras $\mathcal \{A\}$ and $\mathcal \{B\}$ and their projective tensor product $\mathcal \{A\} \mathbin \{\widehat\{\otimes \}\}\mathcal \{B\}$. For some semigroups $S$, we study module biprojectivity and module biflatness of semigroup algebras $l^\{1\}(S)$.},
author = {Ilka, Elham, Mahmoodi, Amin, Bodaghi, Abasalt},
journal = {Mathematica Bohemica},
keywords = {module amenable; module biflat; module biprojective; semigroup algebra},
language = {eng},
number = {2},
pages = {127-140},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some module cohomological properties of Banach algebras},
url = {http://eudml.org/doc/296962},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Ilka, Elham
AU - Mahmoodi, Amin
AU - Bodaghi, Abasalt
TI - Some module cohomological properties of Banach algebras
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 2
SP - 127
EP - 140
AB - We find some relations between module biprojectivity and module biflatness of Banach algebras $\mathcal {A}$ and $\mathcal {B}$ and their projective tensor product $\mathcal {A} \mathbin {\widehat{\otimes }}\mathcal {B}$. For some semigroups $S$, we study module biprojectivity and module biflatness of semigroup algebras $l^{1}(S)$.
LA - eng
KW - module amenable; module biflat; module biprojective; semigroup algebra
UR - http://eudml.org/doc/296962
ER -

References

top
  1. Amini, M., 10.1007/s00233-004-0107-3, Semigroup Forum 69 (2004), 243-254 Corrigendum ibid. 72 2006 page 493. (2004) Zbl1059.43001MR2081295DOI10.1007/s00233-004-0107-3
  2. Amini, M., Bodaghi, A., Bagha, D. Ebrahimi, 10.1007/s00233-010-9211-8, Semigroup Forum 80 (2010), 302-312. (2010) Zbl1200.43001MR2601766DOI10.1007/s00233-010-9211-8
  3. Bodaghi, A., Module amenability of the projective module tensor product, Malay. J. Math. Sci. 52 (2011), 257-265. (2011) Zbl1254.46051MR2854379
  4. Bodaghi, A., Amini, M., 10.1007/s00013-012-0430-y, Arch. Math. 99 (2012), 353-365. (2012) Zbl1267.46062MR2990154DOI10.1007/s00013-012-0430-y
  5. Bodaghi, A., Amini, M., Module biprojective and module biflat Banach algebras, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75 (2014), 25-36. (2014) Zbl1299.43002MR3130203
  6. Bodaghi, A., Amini, M., Babaee, R., Module derivations into iterated dual of Banach algebras, Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 12 (2011), 277-284. (2011) Zbl1324.46060MR2870494
  7. Bodaghi, A., Ebrahimi, H., Bami, M. Lashkarizaheh, 10.2298/FIL1706639B, Filomat 31 (2017), 1639-1654. (2017) MR3635202DOI10.2298/FIL1706639B
  8. Bodaghi, A., Jabbari, A., Module biflatness of the second dual of Banach algebras, Math. Rep., Buchar. 17 (2015), 235-247. (2015) Zbl1374.46038MR3375731
  9. Dales, H. G., Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series 24. Oxford University Press, Oxford (2000). (2000) Zbl0981.46043MR1816726
  10. Duncan, J., Namioka, I., 10.1017/S0308210500010313, Proc. R. Soc. Edinb., Sect. A 80 (1978), 309-321. (1978) Zbl0393.22004MR0516230DOI10.1017/S0308210500010313
  11. Essmaili, M., Medghalchi, A. R., Biflatness of certain semigroup algebras, Bull. Iran. Math. Soc. 39 (2013), 959-969. (2013) Zbl1300.43005MR3126267
  12. Grønbæk, N., 10.1017/S0017089510000364, Glasg. Math. J. 52 (2010), 479-495. (2010) Zbl1210.46037MR2679908DOI10.1017/S0017089510000364
  13. İnceboz, H., Arslan, B., Bodaghi, A., Module symmetrically amenable Banach algebra, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 33 (2017), 233-245. (2017) MR3896791
  14. Johnson, B. E., 10.1090/memo/0127, Memoirs of the American Mathematical Society 127. AMS, Providence (1972). (1972) Zbl0256.18014MR0374934DOI10.1090/memo/0127
  15. Khelemskij, A. Ya., Flat Banach modules and amenable algebras, Trudy Moskov. Mat. Obshch. 47 (1984), 179-218 Russian. (1984) Zbl0569.46027MR0774950
  16. Bami, M. Lashkarizadeh, Valaei, M., Amini, M., 10.1007/s00233-012-9432-0, Semigroup Forum 86 (2013), 279-288. (2013) Zbl1277.46022MR3034775DOI10.1007/s00233-012-9432-0
  17. Pourmahmood-Aghababa, H., 10.1007/s00233-010-9231-4, Semigroup Forum 81 (2010), 344-356. (2010) Zbl1207.46039MR2678721DOI10.1007/s00233-010-9231-4
  18. Pourmahmood-Aghababa, H., 10.1007/s00233-011-9365-z, Semigroup Forum 84 (2012), 200-202. (2012) Zbl1242.20070MR2886007DOI10.1007/s00233-011-9365-z
  19. Pourmahmood-Aghbaba, H., Bodaghi, A., Module approximate amenability of Banach algebras, Bull. Iran. Math. Soc. 39 (2013), 1137-1158. (2013) Zbl1301.43002MR3145209
  20. Ramsden, P., 10.1007/s00233-009-9169-6, Semigroup Forum. 79 (2009), 515-530. (2009) Zbl1213.43002MR2564061DOI10.1007/s00233-009-9169-6
  21. Rezavand, R., Amini, M., Sattari, M. H., Bagha, D. Ebrahimi, 10.1007/s00233-008-9075-3, Semigroup Forum 77 (2008), 300-305 Corrigendum 79 2009 214-215. (2008) Zbl1161.46026MR2443440DOI10.1007/s00233-008-9075-3
  22. Rieffel, M. A., 10.1016/0022-1236(67)90012-2, J. Func. Anal. 1 (1967), 443-491. (1967) Zbl0181.41303MR0223496DOI10.1016/0022-1236(67)90012-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.