On the Hilbert -class field tower of some imaginary biquadratic number fields
Mohamed Mahmoud Chems-Eddin; Abdelmalek Azizi; Abdelkader Zekhnini; Idriss Jerrari
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 269-281
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChems-Eddin, Mohamed Mahmoud, et al. "On the Hilbert $2$-class field tower of some imaginary biquadratic number fields." Czechoslovak Mathematical Journal (2021): 269-281. <http://eudml.org/doc/296964>.
@article{Chems2021,
abstract = {Let $\mathbb \{k\}=\mathbb \{Q\} \bigl (\sqrt\{2\}, \sqrt\{d\} \bigr )$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\mathbb \{k\}_2^\{(2)\}$ its second Hilbert $2$-class field. Denote by $G=\{\rm Gal\}(\mathbb \{k\}_2^\{(2)\}/\mathbb \{k\})$ the Galois group of $\mathbb \{k\}_2^\{(2)\}/\mathbb \{k\}$. The purpose of this note is to investigate the Hilbert $2$-class field tower of $\mathbb \{k\}$ and then deduce the structure of $G$.},
author = {Chems-Eddin, Mohamed Mahmoud, Azizi, Abdelmalek, Zekhnini, Abdelkader, Jerrari, Idriss},
journal = {Czechoslovak Mathematical Journal},
keywords = {$2$-class group; imaginary biquadratic number field; capitulation; Hilbert $2$-class field},
language = {eng},
number = {1},
pages = {269-281},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Hilbert $2$-class field tower of some imaginary biquadratic number fields},
url = {http://eudml.org/doc/296964},
year = {2021},
}
TY - JOUR
AU - Chems-Eddin, Mohamed Mahmoud
AU - Azizi, Abdelmalek
AU - Zekhnini, Abdelkader
AU - Jerrari, Idriss
TI - On the Hilbert $2$-class field tower of some imaginary biquadratic number fields
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 269
EP - 281
AB - Let $\mathbb {k}=\mathbb {Q} \bigl (\sqrt{2}, \sqrt{d} \bigr )$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\mathbb {k}_2^{(2)}$ its second Hilbert $2$-class field. Denote by $G={\rm Gal}(\mathbb {k}_2^{(2)}/\mathbb {k})$ the Galois group of $\mathbb {k}_2^{(2)}/\mathbb {k}$. The purpose of this note is to investigate the Hilbert $2$-class field tower of $\mathbb {k}$ and then deduce the structure of $G$.
LA - eng
KW - $2$-class group; imaginary biquadratic number field; capitulation; Hilbert $2$-class field
UR - http://eudml.org/doc/296964
ER -
References
top- Azizi, A., Unités de certains corps de nombres imaginaires et abéliens sur , Ann. Sci. Math. Qué. 23 (1999), 15-21 French. (1999) Zbl1041.11072MR1721726
- Azizi, A., Sur les unités de certains corps de nombres de degré 8 sur , Ann. Sci. Math. Qué. 29 (2005), 111-129 French. (2005) Zbl1188.11056MR2309703
- Azizi, A., Benhamza, I., Sur la capitulation des 2-classes d’idéaux de , Ann. Sci. Math. Qué. 29 (2005), 1-20 French. (2005) Zbl1217.11097MR2296826
- Azizi, A., Chems-Eddin, M. M., Zekhnini, A., On the rank of the 2-class group of some imaginary triquadratic number fields, Available at https://arxiv.org/abs/1905.01225 (2019), 21 pages. (2019)
- Azizi, A., Mouhib, A., 10.4064/aa109-1-2, Acta Arith. 109 (2003), 27-63 French. (2003) Zbl1077.11078MR1980850DOI10.4064/aa109-1-2
- Azizi, A., Talbi, M., 10.4064/aa127-3-3, Acta Arith. 127 (2007), 231-248 French. (2007) Zbl1169.11049MR2310345DOI10.4064/aa127-3-3
- Azizi, A., Taous, M., 10.4064/aa131-2-1, Acta Arith. 131 (2008), 103-123 French. (2008) Zbl1139.11048MR2388046DOI10.4064/aa131-2-1
- Conner, P. E., Hurrelbrink, J., 10.1142/0663, Series in Pure Mathematics 8. World Scientific, Singapore (1988). (1988) Zbl0743.11061MR0963648DOI10.1142/0663
- Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics. Harper and Row, New York (1968). (1968) Zbl0185.05701MR0231903
- Gras, G., 10.5802/aif.471, Ann. Inst. Fourier 23 (1973), 1-48 French. (1973) Zbl0276.12013MR0360519DOI10.5802/aif.471
- Heider, F.-P., Schmithals, B., 10.1515/crll.1982.336.1, J. Reine Angew. Math. 336 (1982), 1-25 German. (1982) Zbl0505.12016MR0671319DOI10.1515/crll.1982.336.1
- Ishida, M., 10.1007/BFb0100829, Lecture Notes in Mathematics 555. Springer, Berlin (1976). (1976) Zbl0353.12001MR0435028DOI10.1007/BFb0100829
- Kaplan, P., 10.2969/jmsj/02540596, J. Math. Soc. Japan 25 (1973), 596-608 French. (1973) Zbl0276.12006MR0323757DOI10.2969/jmsj/02540596
- Kaplan, P., 10.1515/crll.1976.283-284.313, J. Reine. Angew. Math. 283-284 (1976), 313-363 French. (1976) Zbl0337.12003MR0404206DOI10.1515/crll.1976.283-284.313
- Kisilevsky, H., 10.1016/0022-314X(76)90004-4, J. Number Theory 8 (1976), 271-279. (1976) Zbl0334.12019MR0417128DOI10.1016/0022-314X(76)90004-4
- Kučera, R., 10.1006/jnth.1995.1054, J. Number Theory 52 (1995), 43-52. (1995) Zbl0852.11065MR1331764DOI10.1006/jnth.1995.1054
- Lemmermeyer, F., 10.4064/aa-66-3-245-260, Acta Arith. 66 (1994), 245-260. (1994) Zbl0807.11052MR1276992DOI10.4064/aa-66-3-245-260
- McCall, T. M., Parry, C. J., Ranalli, R. R., 10.1006/jnth.1995.1079, J. Number Theory 53 (1995), 88-99. (1995) Zbl0831.11059MR1344833DOI10.1006/jnth.1995.1079
- Taussky, O., 10.1515/crll.1969.239-240.435, J. Reine Angew. Math. 239-240 (1969), 435-438. (1969) Zbl0186.09002MR0279070DOI10.1515/crll.1969.239-240.435
- Wada, H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209 9999MR99999 0214565 . (1966) Zbl0158.30103MR0214565
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.