On the Hilbert 2 -class field tower of some imaginary biquadratic number fields

Mohamed Mahmoud Chems-Eddin; Abdelmalek Azizi; Abdelkader Zekhnini; Idriss Jerrari

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 269-281
  • ISSN: 0011-4642

Abstract

top
Let 𝕜 = 2 , d be an imaginary bicyclic biquadratic number field, where d is an odd negative square-free integer and 𝕜 2 ( 2 ) its second Hilbert 2 -class field. Denote by G = Gal ( 𝕜 2 ( 2 ) / 𝕜 ) the Galois group of 𝕜 2 ( 2 ) / 𝕜 . The purpose of this note is to investigate the Hilbert 2 -class field tower of 𝕜 and then deduce the structure of G .

How to cite

top

Chems-Eddin, Mohamed Mahmoud, et al. "On the Hilbert $2$-class field tower of some imaginary biquadratic number fields." Czechoslovak Mathematical Journal (2021): 269-281. <http://eudml.org/doc/296964>.

@article{Chems2021,
abstract = {Let $\mathbb \{k\}=\mathbb \{Q\} \bigl (\sqrt\{2\}, \sqrt\{d\} \bigr )$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\mathbb \{k\}_2^\{(2)\}$ its second Hilbert $2$-class field. Denote by $G=\{\rm Gal\}(\mathbb \{k\}_2^\{(2)\}/\mathbb \{k\})$ the Galois group of $\mathbb \{k\}_2^\{(2)\}/\mathbb \{k\}$. The purpose of this note is to investigate the Hilbert $2$-class field tower of $\mathbb \{k\}$ and then deduce the structure of $G$.},
author = {Chems-Eddin, Mohamed Mahmoud, Azizi, Abdelmalek, Zekhnini, Abdelkader, Jerrari, Idriss},
journal = {Czechoslovak Mathematical Journal},
keywords = {$2$-class group; imaginary biquadratic number field; capitulation; Hilbert $2$-class field},
language = {eng},
number = {1},
pages = {269-281},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Hilbert $2$-class field tower of some imaginary biquadratic number fields},
url = {http://eudml.org/doc/296964},
year = {2021},
}

TY - JOUR
AU - Chems-Eddin, Mohamed Mahmoud
AU - Azizi, Abdelmalek
AU - Zekhnini, Abdelkader
AU - Jerrari, Idriss
TI - On the Hilbert $2$-class field tower of some imaginary biquadratic number fields
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 269
EP - 281
AB - Let $\mathbb {k}=\mathbb {Q} \bigl (\sqrt{2}, \sqrt{d} \bigr )$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\mathbb {k}_2^{(2)}$ its second Hilbert $2$-class field. Denote by $G={\rm Gal}(\mathbb {k}_2^{(2)}/\mathbb {k})$ the Galois group of $\mathbb {k}_2^{(2)}/\mathbb {k}$. The purpose of this note is to investigate the Hilbert $2$-class field tower of $\mathbb {k}$ and then deduce the structure of $G$.
LA - eng
KW - $2$-class group; imaginary biquadratic number field; capitulation; Hilbert $2$-class field
UR - http://eudml.org/doc/296964
ER -

References

top
  1. Azizi, A., Unités de certains corps de nombres imaginaires et abéliens sur , Ann. Sci. Math. Qué. 23 (1999), 15-21 French. (1999) Zbl1041.11072MR1721726
  2. Azizi, A., Sur les unités de certains corps de nombres de degré 8 sur , Ann. Sci. Math. Qué. 29 (2005), 111-129 French. (2005) Zbl1188.11056MR2309703
  3. Azizi, A., Benhamza, I., Sur la capitulation des 2-classes d’idéaux de ( d , - 2 ) , Ann. Sci. Math. Qué. 29 (2005), 1-20 French. (2005) Zbl1217.11097MR2296826
  4. Azizi, A., Chems-Eddin, M. M., Zekhnini, A., On the rank of the 2-class group of some imaginary triquadratic number fields, Available at https://arxiv.org/abs/1905.01225 (2019), 21 pages. (2019) 
  5. Azizi, A., Mouhib, A., 10.4064/aa109-1-2, Acta Arith. 109 (2003), 27-63 French. (2003) Zbl1077.11078MR1980850DOI10.4064/aa109-1-2
  6. Azizi, A., Talbi, M., 10.4064/aa127-3-3, Acta Arith. 127 (2007), 231-248 French. (2007) Zbl1169.11049MR2310345DOI10.4064/aa127-3-3
  7. Azizi, A., Taous, M., 10.4064/aa131-2-1, Acta Arith. 131 (2008), 103-123 French. (2008) Zbl1139.11048MR2388046DOI10.4064/aa131-2-1
  8. Conner, P. E., Hurrelbrink, J., 10.1142/0663, Series in Pure Mathematics 8. World Scientific, Singapore (1988). (1988) Zbl0743.11061MR0963648DOI10.1142/0663
  9. Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics. Harper and Row, New York (1968). (1968) Zbl0185.05701MR0231903
  10. Gras, G., 10.5802/aif.471, Ann. Inst. Fourier 23 (1973), 1-48 French. (1973) Zbl0276.12013MR0360519DOI10.5802/aif.471
  11. Heider, F.-P., Schmithals, B., 10.1515/crll.1982.336.1, J. Reine Angew. Math. 336 (1982), 1-25 German. (1982) Zbl0505.12016MR0671319DOI10.1515/crll.1982.336.1
  12. Ishida, M., 10.1007/BFb0100829, Lecture Notes in Mathematics 555. Springer, Berlin (1976). (1976) Zbl0353.12001MR0435028DOI10.1007/BFb0100829
  13. Kaplan, P., 10.2969/jmsj/02540596, J. Math. Soc. Japan 25 (1973), 596-608 French. (1973) Zbl0276.12006MR0323757DOI10.2969/jmsj/02540596
  14. Kaplan, P., 10.1515/crll.1976.283-284.313, J. Reine. Angew. Math. 283-284 (1976), 313-363 French. (1976) Zbl0337.12003MR0404206DOI10.1515/crll.1976.283-284.313
  15. Kisilevsky, H., 10.1016/0022-314X(76)90004-4, J. Number Theory 8 (1976), 271-279. (1976) Zbl0334.12019MR0417128DOI10.1016/0022-314X(76)90004-4
  16. Kučera, R., 10.1006/jnth.1995.1054, J. Number Theory 52 (1995), 43-52. (1995) Zbl0852.11065MR1331764DOI10.1006/jnth.1995.1054
  17. Lemmermeyer, F., 10.4064/aa-66-3-245-260, Acta Arith. 66 (1994), 245-260. (1994) Zbl0807.11052MR1276992DOI10.4064/aa-66-3-245-260
  18. McCall, T. M., Parry, C. J., Ranalli, R. R., 10.1006/jnth.1995.1079, J. Number Theory 53 (1995), 88-99. (1995) Zbl0831.11059MR1344833DOI10.1006/jnth.1995.1079
  19. Taussky, O., 10.1515/crll.1969.239-240.435, J. Reine Angew. Math. 239-240 (1969), 435-438. (1969) Zbl0186.09002MR0279070DOI10.1515/crll.1969.239-240.435
  20. Wada, H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209 9999MR99999 0214565 . (1966) Zbl0158.30103MR0214565

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.