A certain tensor on real hypersurfaces in a nonflat complex space form

Kazuhiro Okumura

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 1059-1077
  • ISSN: 0011-4642

Abstract

top
In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure ( φ , ξ , η , g ) induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field h ( = 1 2 ξ φ ) plays an important role in contact Riemannian geometry. In this paper, we investigate real hypersurfaces in a nonflat complex space form from the viewpoint of the parallelism of the tensor field h .

How to cite

top

Okumura, Kazuhiro. "A certain tensor on real hypersurfaces in a nonflat complex space form." Czechoslovak Mathematical Journal 70.4 (2020): 1059-1077. <http://eudml.org/doc/296972>.

@article{Okumura2020,
abstract = {In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure $(\phi , \xi , \eta , g)$ induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field $h$$(=\frac\{1\}\{2\} \mathcal \{L\}_\xi \phi )$ plays an important role in contact Riemannian geometry. In this paper, we investigate real hypersurfaces in a nonflat complex space form from the viewpoint of the parallelism of the tensor field $h$.},
author = {Okumura, Kazuhiro},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonflat complex space form; real hypersurface; Hopf hypersurface; ruled real hypersurface; the tensor field $h$},
language = {eng},
number = {4},
pages = {1059-1077},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A certain tensor on real hypersurfaces in a nonflat complex space form},
url = {http://eudml.org/doc/296972},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Okumura, Kazuhiro
TI - A certain tensor on real hypersurfaces in a nonflat complex space form
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1059
EP - 1077
AB - In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure $(\phi , \xi , \eta , g)$ induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field $h$$(=\frac{1}{2} \mathcal {L}_\xi \phi )$ plays an important role in contact Riemannian geometry. In this paper, we investigate real hypersurfaces in a nonflat complex space form from the viewpoint of the parallelism of the tensor field $h$.
LA - eng
KW - nonflat complex space form; real hypersurface; Hopf hypersurface; ruled real hypersurface; the tensor field $h$
UR - http://eudml.org/doc/296972
ER -

References

top
  1. Blair, D. E., 10.1007/978-1-4757-3604-5, Progress in Mathematics 203, Birkhäuser, Boston (2010). (2010) Zbl1246.53001MR2682326DOI10.1007/978-1-4757-3604-5
  2. Berndt, J., 10.1515/crll.1989.395.132, J. Reine Angew. Math. 395 (1989), 132-141. (1989) Zbl0655.53046MR0983062DOI10.1515/crll.1989.395.132
  3. Cecil, T. E., Ryan, P. J., 10.1090/S0002-9947-1982-0637703-3, Trans. Am. Math. Soc. 269 (1982), 481-499. (1982) Zbl0492.53039MR0637703DOI10.1090/S0002-9947-1982-0637703-3
  4. Cecil, T. E., Ryan, P. J., 10.1007/978-1-4939-3246-7, Springer Monographs in Mathematics, Springer, New York (2015). (2015) Zbl1331.53001MR3408101DOI10.1007/978-1-4939-3246-7
  5. Cho, J. T., Inoguchi, J.-I., 10.1142/9789814566285_0008, Differential Geometry and Submanifolds and Its Related Topics, World Scientific, Hackensack (2012), 87-97. (2012) Zbl1303.53065MR3203474DOI10.1142/9789814566285_0008
  6. Cho, J. T., Ki, U-H., 10.21099/tkbjm/1496163476, Tsukuba J. Math. 22 (1998), 145-156. (1998) Zbl0983.53034MR1637676DOI10.21099/tkbjm/1496163476
  7. Ghosh, A., 10.1007/s00022-018-0405-7, J. Geom. 109 (2018), Article ID 10, 9 pages. (2018) Zbl1391.53018MR3755688DOI10.1007/s00022-018-0405-7
  8. Ki, U-H., Kim, N-G., 10.1007/BF02582036, Acta Math. Sin., New Ser. 10 (1994), 401-409. (1994) Zbl0819.53012MR1416151DOI10.1007/BF02582036
  9. Kimura, M., 10.1090/S0002-9947-1986-0837803-2, Trans. Am. Math. Soc. 296 (1986), 137-149. (1986) Zbl0597.53021MR0837803DOI10.1090/S0002-9947-1986-0837803-2
  10. Kimura, M., 10.1007/BF01450843, Math. Ann. 276 (1987), 487-497. (1987) Zbl0605.53023MR0875342DOI10.1007/BF01450843
  11. Kimura, M., Maeda, S., 10.1007/BF01159962, Math. Z. 202 (1989), 299-311. (1989) Zbl0661.53015MR1017573DOI10.1007/BF01159962
  12. Maeda, S., Tanabe, H., 10.1016/j.difgeo.2016.08.005, Differ. Geom. Appl. 54, Part A (2017), 2-10. (2017) Zbl1375.53029MR3693908DOI10.1016/j.difgeo.2016.08.005
  13. Montiel, S., 10.2969/jmsj/03730515, J. Math. Soc. Japan 37 (1985), 515-535. (1985) Zbl0554.53021MR0792990DOI10.2969/jmsj/03730515
  14. Montiel, S., Romero, A., 10.1007/BF00164402, Geom. Dedicata 20 (1986), 245-261. (1986) Zbl0587.53052MR0833849DOI10.1007/BF00164402
  15. Niebergall, R., Ryan, P. J., Real hypersurfaces in complex space forms, Tight and Taut Submanifolds T. E. Cecil et al. Mathematical Sciences Research Institute Publications 32, Cambridge University Press, Cambridge (1998), 233-305. (1998) Zbl0904.53005MR1486875
  16. Okumura, M., 10.1090/S0002-9947-1975-0377787-X, Trans. Am. Math. Soc. 212 (1975), 355-364. (1975) Zbl0288.53043MR0377787DOI10.1090/S0002-9947-1975-0377787-X
  17. Pérez, J. D., Santos, F. G., Suh, Y. J., 10.36045/bbms/1161350687, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 459-469. (2006) Zbl1130.53039MR2307681DOI10.36045/bbms/1161350687
  18. Perrone, D., Contact Riemannian manifolds satisfying R ( X , ξ ) · R = 0 , Yokohama Math. J. 39 (1992), 141-149. (1992) Zbl0777.53046MR1150045
  19. Takagi, R., On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506. (1973) Zbl0274.53062MR0336660
  20. Theofanidis, T., Xenos, P. J., 10.5486/pmd.2015.7115, Publ. Math. 87 (2015), 175-189. (2015) Zbl1363.53051MR3367919DOI10.5486/pmd.2015.7115

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.