A certain tensor on real hypersurfaces in a nonflat complex space form
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 1059-1077
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topOkumura, Kazuhiro. "A certain tensor on real hypersurfaces in a nonflat complex space form." Czechoslovak Mathematical Journal 70.4 (2020): 1059-1077. <http://eudml.org/doc/296972>.
@article{Okumura2020,
abstract = {In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure $(\phi , \xi , \eta , g)$ induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field $h$$(=\frac\{1\}\{2\} \mathcal \{L\}_\xi \phi )$ plays an important role in contact Riemannian geometry. In this paper, we investigate real hypersurfaces in a nonflat complex space form from the viewpoint of the parallelism of the tensor field $h$.},
author = {Okumura, Kazuhiro},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonflat complex space form; real hypersurface; Hopf hypersurface; ruled real hypersurface; the tensor field $h$},
language = {eng},
number = {4},
pages = {1059-1077},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A certain tensor on real hypersurfaces in a nonflat complex space form},
url = {http://eudml.org/doc/296972},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Okumura, Kazuhiro
TI - A certain tensor on real hypersurfaces in a nonflat complex space form
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1059
EP - 1077
AB - In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure $(\phi , \xi , \eta , g)$ induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field $h$$(=\frac{1}{2} \mathcal {L}_\xi \phi )$ plays an important role in contact Riemannian geometry. In this paper, we investigate real hypersurfaces in a nonflat complex space form from the viewpoint of the parallelism of the tensor field $h$.
LA - eng
KW - nonflat complex space form; real hypersurface; Hopf hypersurface; ruled real hypersurface; the tensor field $h$
UR - http://eudml.org/doc/296972
ER -
References
top- Blair, D. E., 10.1007/978-1-4757-3604-5, Progress in Mathematics 203, Birkhäuser, Boston (2010). (2010) Zbl1246.53001MR2682326DOI10.1007/978-1-4757-3604-5
- Berndt, J., 10.1515/crll.1989.395.132, J. Reine Angew. Math. 395 (1989), 132-141. (1989) Zbl0655.53046MR0983062DOI10.1515/crll.1989.395.132
- Cecil, T. E., Ryan, P. J., 10.1090/S0002-9947-1982-0637703-3, Trans. Am. Math. Soc. 269 (1982), 481-499. (1982) Zbl0492.53039MR0637703DOI10.1090/S0002-9947-1982-0637703-3
- Cecil, T. E., Ryan, P. J., 10.1007/978-1-4939-3246-7, Springer Monographs in Mathematics, Springer, New York (2015). (2015) Zbl1331.53001MR3408101DOI10.1007/978-1-4939-3246-7
- Cho, J. T., Inoguchi, J.-I., 10.1142/9789814566285_0008, Differential Geometry and Submanifolds and Its Related Topics, World Scientific, Hackensack (2012), 87-97. (2012) Zbl1303.53065MR3203474DOI10.1142/9789814566285_0008
- Cho, J. T., Ki, U-H., 10.21099/tkbjm/1496163476, Tsukuba J. Math. 22 (1998), 145-156. (1998) Zbl0983.53034MR1637676DOI10.21099/tkbjm/1496163476
- Ghosh, A., 10.1007/s00022-018-0405-7, J. Geom. 109 (2018), Article ID 10, 9 pages. (2018) Zbl1391.53018MR3755688DOI10.1007/s00022-018-0405-7
- Ki, U-H., Kim, N-G., 10.1007/BF02582036, Acta Math. Sin., New Ser. 10 (1994), 401-409. (1994) Zbl0819.53012MR1416151DOI10.1007/BF02582036
- Kimura, M., 10.1090/S0002-9947-1986-0837803-2, Trans. Am. Math. Soc. 296 (1986), 137-149. (1986) Zbl0597.53021MR0837803DOI10.1090/S0002-9947-1986-0837803-2
- Kimura, M., 10.1007/BF01450843, Math. Ann. 276 (1987), 487-497. (1987) Zbl0605.53023MR0875342DOI10.1007/BF01450843
- Kimura, M., Maeda, S., 10.1007/BF01159962, Math. Z. 202 (1989), 299-311. (1989) Zbl0661.53015MR1017573DOI10.1007/BF01159962
- Maeda, S., Tanabe, H., 10.1016/j.difgeo.2016.08.005, Differ. Geom. Appl. 54, Part A (2017), 2-10. (2017) Zbl1375.53029MR3693908DOI10.1016/j.difgeo.2016.08.005
- Montiel, S., 10.2969/jmsj/03730515, J. Math. Soc. Japan 37 (1985), 515-535. (1985) Zbl0554.53021MR0792990DOI10.2969/jmsj/03730515
- Montiel, S., Romero, A., 10.1007/BF00164402, Geom. Dedicata 20 (1986), 245-261. (1986) Zbl0587.53052MR0833849DOI10.1007/BF00164402
- Niebergall, R., Ryan, P. J., Real hypersurfaces in complex space forms, Tight and Taut Submanifolds T. E. Cecil et al. Mathematical Sciences Research Institute Publications 32, Cambridge University Press, Cambridge (1998), 233-305. (1998) Zbl0904.53005MR1486875
- Okumura, M., 10.1090/S0002-9947-1975-0377787-X, Trans. Am. Math. Soc. 212 (1975), 355-364. (1975) Zbl0288.53043MR0377787DOI10.1090/S0002-9947-1975-0377787-X
- Pérez, J. D., Santos, F. G., Suh, Y. J., 10.36045/bbms/1161350687, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 459-469. (2006) Zbl1130.53039MR2307681DOI10.36045/bbms/1161350687
- Perrone, D., Contact Riemannian manifolds satisfying , Yokohama Math. J. 39 (1992), 141-149. (1992) Zbl0777.53046MR1150045
- Takagi, R., On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506. (1973) Zbl0274.53062MR0336660
- Theofanidis, T., Xenos, P. J., 10.5486/pmd.2015.7115, Publ. Math. 87 (2015), 175-189. (2015) Zbl1363.53051MR3367919DOI10.5486/pmd.2015.7115
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.