Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results
Diane M. Donovan; Mike Grannell; Emine Ş. Yazıcı
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 4, page 437-457
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDonovan, Diane M., Grannell, Mike, and Yazıcı, Emine Ş.. "Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 437-457. <http://eudml.org/doc/296974>.
@article{Donovan2020,
abstract = {We review results for the embedding of orthogonal partial Latin squares in orthogonal Latin squares, comparing and contrasting these with results for embedding partial Latin squares in Latin squares. We also present a new construction that uses the existence of a set of $t$ mutually orthogonal Latin squares of order $n$ to construct a set of $2t$ mutually orthogonal Latin squares of order $n^t$.},
author = {Donovan, Diane M., Grannell, Mike, Yazıcı, Emine Ş.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {embedding; mutually orthogonal Latin square},
language = {eng},
number = {4},
pages = {437-457},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results},
url = {http://eudml.org/doc/296974},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Donovan, Diane M.
AU - Grannell, Mike
AU - Yazıcı, Emine Ş.
TI - Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 437
EP - 457
AB - We review results for the embedding of orthogonal partial Latin squares in orthogonal Latin squares, comparing and contrasting these with results for embedding partial Latin squares in Latin squares. We also present a new construction that uses the existence of a set of $t$ mutually orthogonal Latin squares of order $n$ to construct a set of $2t$ mutually orthogonal Latin squares of order $n^t$.
LA - eng
KW - embedding; mutually orthogonal Latin square
UR - http://eudml.org/doc/296974
ER -
References
top- Abel R. J. R., Li Y., 10.1016/j.disc.2014.11.018, Discrete Math. 338 (2015), no. 4, 593–607. MR3300747DOI10.1016/j.disc.2014.11.018
- Andersen L. D., Hilton A. J. W., Thanks Evans!, Proc. London Math. Soc. (3) 47 (1983), no. 3, 507–522. MR0716801
- Andersen L. D., Hilton A. J. W., Rodger C. A., 10.1112/jlms/s2-26.1.21, J. London Math. Soc. (2) 26 (1982), no. 1, 21–27. MR0667240DOI10.1112/jlms/s2-26.1.21
- Barber B., Kühn D., Lo A., Osthus D., Taylor A., 10.1016/j.jcta.2017.04.005, J. Combin. Theory Ser. A. 151 (2017), 146–201. MR3663493DOI10.1016/j.jcta.2017.04.005
- Belyavskaya G. B., Lumpov A. D., Cross product of two systems of quasigroups and its use in constructing partially orthogonal quasigroups, Mat. Issled., Issled. Teor. Binarnykh i -arnykh Kvazigrupp 83 (1985), 26–38 (Russian). MR0807271
- Bryant D., Buchanan M., 10.1016/j.jcta.2006.10.009, J. Combin. Theory Ser. A 114 (2007), no. 6, 1046–1088. MR2337238DOI10.1016/j.jcta.2006.10.009
- Bryant D., Horsley D., 10.1002/jcd.20189, J. Comb. Des. 17 (2009), no. 1, 63–89. MR2475426DOI10.1002/jcd.20189
- Colbourn C. J., 10.1016/0166-218X(84)90075-1, Discrete Appl. Math. 8 (1984), 25–30. MR0739595DOI10.1016/0166-218X(84)90075-1
- Colbourn C. J., Dinitz J. H., Handbook of Combinatorial Designs, Chapman and Hall/CRC, 2007. MR2246267
- Colbourn C. J., Zhu L., The spectrum of -orthogonal Latin squares, Combinatorics Advances, Tehran, 1994, Math. Appl., 329, Kluwer Acad. Publ., Dordrecht, 1995, pages 49–75. MR1366841
- Cruse A. B., 10.1016/0097-3165(74)90068-5, J. Combinatorial Theory Ser. A. 16 (1974), 18–22. MR0329925DOI10.1016/0097-3165(74)90068-5
- Damerell R. M., On Smetaniuk's construction for Latin squares and the Andersen–Hilton theorem, Proc. London Math. Soc. (3) 47 (1983), no. 3, 523–526. MR0716802
- Dietrich H., Wanless I. M., 10.1016/j.jsc.2017.04.002, J. Symbolic Comput. 86 (2018), 142–152. MR3725217DOI10.1016/j.jsc.2017.04.002
- Donovan D., Grannell M., Yazıcı E. Ş., 10.1016/j.disc.2020.111835, Discrete Math. 343 (2020), no. 6, 111835, 6 pages. MR4062293DOI10.1016/j.disc.2020.111835
- Donovan D. M., Yazıcı E. Ş., 10.1016/j.jcta.2014.04.003, J. Combin. Theory Ser. A 126 (2014), 24–34. MR3213305DOI10.1016/j.jcta.2014.04.003
- Drake D. A., Lenz H., 10.1007/BF01225000, Arch. Math. (Basel) 34 (1980), no. 6, 565–576. MR0596867DOI10.1007/BF01225000
- Evans A. B., Orthomorphism Graphs of Groups, Lecture Notes in Mathematics, 1535, Springer, Berlin, 1992. MR1222645
- Evans T., 10.1080/00029890.1960.11992032, Amer. Math. Monthly 67 (1960), 958–961. MR0122728DOI10.1080/00029890.1960.11992032
- Falcón R. M., Falcón Ó. J., Núñez J., Computing the sets of totally symmetric and totally conjugate orthogonal partial Latin squares by means of a SAT solver, Proc. of 17th Int. Conf. Computational and Mathematical Methods in Science and Engineering, CMMSE 2017, pages 841–852.
- Ganter B., 10.1007/BF01222584, Arch. Math. (Basel) 22 (1971), 328–332 (German). MR0294145DOI10.1007/BF01222584
- Ganter B., Partial pairwise balanced designs, Colloq. Int. Sulle Teorie Combinatorie, Rome, 1973, Tomo II, Accad. Naz. Lincei, 1976, pages 377–380. MR0472553
- Gustavsson T., Decompositions of Large Graphs and Digraphs with High Minimum Degree, Ph.D. Thesis, Stockholm University, Stockholm, 1991.
- Hall M., 10.1090/S0002-9904-1945-08361-X, Bull. Amer. Math. Soc. 51 (1945), 387–388. MR0013111DOI10.1090/S0002-9904-1945-08361-X
- Hall P., On representative subsets, Classic Papers in Combinatorics, Birkhäuser, Boston, 1987, pages 58–62.
- Heinrich K., Zhu L., 10.1016/0012-365X(86)90070-1, Discrete Math. 59 (1986), no. 1–2, 69–78. MR0837956DOI10.1016/0012-365X(86)90070-1
- Hilton A. J. W., Rodger C. A., Wojciechowski J., Prospects for good embeddings of pairs of partial orthogonal Latin squares and of partial Kirkman triple systems, J. Combin. Math. Combin. Comput. 11 (1992), 83–91. MR1160067
- Hirsch R., Jackson M., 10.2178/jsl.7704090, J. Symbolic Logic 77 (2012), no. 4, 1211–1244. MR3051622DOI10.2178/jsl.7704090
- Horton J. D., 10.1016/0097-3165(74)90069-7, J. Combinatorial Theory Ser. A 16 (1974), 23–33. MR0347641DOI10.1016/0097-3165(74)90069-7
- Jenkins P., Embedding a restricted class of partial designs, Ars Combin. 77 (2005), 295–303. MR2180852
- Jenkins P., 10.1002/jcd.20087, J. Combin. Des. 14 (2006), no. 4, 270–276. MR2229878DOI10.1002/jcd.20087
- Jenkins P., 10.1017/S0004972700038715, Bull. Austral. Math. Soc. 73 (2006), 159–160. DOI10.1017/S0004972700038715
- Keevash P., 10.1007/978-3-662-59204-5_9, I. Bárány, G. Katona, A. Sali eds., Building Bridges II., Bolyai Society Mathematical Studies, 28, Springer, Berlin, 2019. DOI10.1007/978-3-662-59204-5_9
- König D., 10.1007/BF01456961, Math. Ann. 77 (1916), no. 4, 453–465 (German). MR1511872DOI10.1007/BF01456961
- Luria Z., New bounds on the number of -queens configurations, available at arXiv: 1705.05225v2 [math.CO] (2017), 12 pages.
- Lindner C. C., 10.4153/CMB-1970-013-x, Canad. Math. Bull. 13 (1970), no. 1, 65–68. MR0262092DOI10.4153/CMB-1970-013-x
- Lindner C. C., 10.1016/0097-3165(72)90067-2, J. Combinatorial Theory Ser. A. 13 (1972), 339–345. MR0314649DOI10.1016/0097-3165(72)90067-2
- Lindner C. C., 10.1007/BFb0066437, Graphs and Combinatorics, Lecture Notes in Math., 406, Springer, Berlin, 1974, pages 109–152. MR0379211DOI10.1007/BFb0066437
- Lindner C. C., 10.1016/0097-3165(75)90046-1, J. Comb. Theory Ser. A. 18 (1975), 349–351. MR0379223DOI10.1016/0097-3165(75)90046-1
- Lindner C. C., 10.1090/S0002-9939-1976-0409227-2, Proc. Amer. Math. Soc. 59 (1976), no. 1, 184–186. MR0409227DOI10.1090/S0002-9939-1976-0409227-2
- Lindner C. C., Cruse A. B., 10.1112/jlms/s2-12.4.479, J. London Math. Soc. (2) 12 (1976), 479–484. MR0432796DOI10.1112/jlms/s2-12.4.479
- Mann H. B., 10.1214/aoms/1177731539, Ann. Math. Statistics 13 (1942), 418–423. MR0007736DOI10.1214/aoms/1177731539
- Mann H. B., Ryser H. J., 10.1080/00029890.1953.11988312, Amer. Math. Monthly 60 (1953), no. 6, 397–401. MR0055293DOI10.1080/00029890.1953.11988312
- Nosov V. A., Sachkov V. N., Tarakanov V. E., Combinatorial analysis (matrix problems, the theory of sampling), Probability Theory. Mathematical Statistics. Theoretical Cybernetics. 188, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow 18 (1981), 53–93, 188 (Russian). MR0625132
- Quackenbush R. W., Near vector spaces over GF and -BIBDs, Linear Algebra Appl. 10 (1975), 259–266. MR0369099
- Rodger C. A., 10.1016/0012-365X(87)90141-5, Discrete Math. 65 (1987), no. 2, 187–196. MR0893080DOI10.1016/0012-365X(87)90141-5
- Rodger C. A., Recent results on the embedding of Latin squares and related structures, cycle systems and graph designs, Matematiche (Catania) 47 (1992), no. 2, 295–311. MR1275861
- Ryser H. J., 10.1090/S0002-9939-1951-0042361-0, Proc. Amer. Math. Soc. 2 (1951), 550–552. MR0042361DOI10.1090/S0002-9939-1951-0042361-0
- Smetaniuk B., A new construction on Latin squares. I. A proof of the Evans conjecture, Ars Combin. 11 (1981), 155–172. MR0629869
- Stevens B., Mendelsohn E., 10.1002/(SICI)1520-6610(1999)7:3<185::AID-JCD3>3.0.CO;2-3, J. Combin. Des. 7 (1999), no. 3, 185–203. MR1681504DOI10.1002/(SICI)1520-6610(1999)7:3<185::AID-JCD3>3.0.CO;2-3
- Treash A. C., Inverse Property Loops and Related Steiner Triple Systems, Ph.D. Thesis, Emory University, Atlanta, 1969. MR2618359
- Treash C., 10.1016/0097-3165(71)90030-6, Combinatorial Theory, Ser. A. 10 (1971), 259–265. MR0274634DOI10.1016/0097-3165(71)90030-6
- Vodička M., Zlatoš P., 10.26493/1855-3974.1884.5cb, Ars Math. Contemp. 17 (2019), no. 2, 535–554. MR4041359DOI10.26493/1855-3974.1884.5cb
- Van der Waerden B. L., 10.1007/BF02952519, Abh. Math. Sem. Univ. Hamburg 5 (1927), no. 1, 185–188 (German). MR3069474DOI10.1007/BF02952519
- Wallis W. D., Zhu L., Orthogonal Latin squares with small subsquares, Combinatorial Mathematics, X, Adelaide, 1982, Lecture Notes in Math., 1036, Springer, Berlin, 1983, pages 398–409. MR0731596
- Wanless I. M., Webb B. S., Small partial Latin squares that cannot be embedded in a Cayley table, Australas. J. Combin. 67 (2017), no. 2, 352–363. MR3607832
- Zhu L., 10.1016/0012-365X(84)90191-2, Discrete Math. 48 (1984), no. 2–3, 315–321. MR0737274DOI10.1016/0012-365X(84)90191-2
- Zhu L., Some results on orthogonal Latin squares with orthogonal subsquares, Utilitas Math. 25 (1984), 241–248. MR0752862
- Zhu L., Zhang H., 10.1016/S0012-365X(03)00053-0, Discrete Math. 268 (2003), no. 1–3, 343–349. MR1983294DOI10.1016/S0012-365X(03)00053-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.