New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 881-890
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Jiancheng, and Mi, Rong. "New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms." Czechoslovak Mathematical Journal 70.3 (2020): 881-890. <http://eudml.org/doc/296977>.
@article{Liu2020,
abstract = {We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.},
author = {Liu, Jiancheng, Mi, Rong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Jacobi operator; first eigenvalue; closed hypersurface},
language = {eng},
number = {3},
pages = {881-890},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms},
url = {http://eudml.org/doc/296977},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Liu, Jiancheng
AU - Mi, Rong
TI - New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 881
EP - 890
AB - We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.
LA - eng
KW - Jacobi operator; first eigenvalue; closed hypersurface
UR - http://eudml.org/doc/296977
ER -
References
top- Alencar, H., Carmo, M. do, 10.1090/S0002-9939-1994-1172943-2, Proc. Am. Math. Soc. 120 (1994), 1223-1229. (1994) Zbl0802.53017MR1172943DOI10.1090/S0002-9939-1994-1172943-2
- Alías, L. J., On the stability index of minimal and constant mean curvature hypersurfaces in spheres, Rev. Unión Mat. Argent. 47 (2006-2007), 39-61. (2006) Zbl1139.53029MR2301375
- L. J. Alías, A. Barros, A. Brasil, Jr., 10.1090/S0002-9939-04-07559-8, Proc. Am. Math. Soc. 133 (2005), 875-884. (2005) Zbl1065.53046MR2113939DOI10.1090/S0002-9939-04-07559-8
- Alías, L. J., García-Martínez, S. C., 10.1007/s10711-011-9588-x, Geom. Dedicata 156 (2012), 31-47. (2012) Zbl1232.53046MR2863544DOI10.1007/s10711-011-9588-x
- Alías, L. J., Meléndez, J., Palmas, O., 10.1016/j.difgeo.2018.01.001, Differ. Geom. Appl. 58 (2018), 65-82. (2018) Zbl1387.53069MR3777748DOI10.1016/j.difgeo.2018.01.001
- Aquino, C. P., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L., 10.2989/16073606.2017.1305463, Quaest. Math. 40 (2017), 605-616. (2017) Zbl1426.53077MR3691472DOI10.2989/16073606.2017.1305463
- Barbosa, J. L., Carmo, M. do, Eschenburg, J., 10.1007/bf01161634, Math. Z. 197 (1988), 123-138. (1988) Zbl0653.53045MR0917854DOI10.1007/bf01161634
- Chavel, I., 10.1016/S0079-8169(08)60806-5, Pure and Applied Mathematics 115. Academic Press, Orlando (1984). (1984) Zbl0551.53001MR0768584DOI10.1016/S0079-8169(08)60806-5
- Chen, D., Cheng, Q.-M., 10.1007/s00526-017-1132-x, Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 50, 12 pages. (2017) Zbl1368.53042MR3626321DOI10.1007/s00526-017-1132-x
- Cheng, Q.-M., 10.1007/BF02566409, Comment. Math. Helv. 71 (1996), 60-69. (1996) Zbl0874.53046MR1371678DOI10.1007/BF02566409
- Cheng, Q.-M., 10.1112/S0024610701002587, J. Lond. Math. Soc., II. Ser. 64 (2001), 755-768. (2001) Zbl1023.53044MR1865560DOI10.1112/S0024610701002587
- Cheng, Q.-M., Nakagawa, H., 10.32917/hmj/1206454435, Hiroshima Math. J. 20 (1990), 1-10. (1990) Zbl0711.53045MR1050421DOI10.32917/hmj/1206454435
- Cheng, S.-Y., 10.1007/BF01214381, Math. Z. 143 (1975), 289-297. (1975) Zbl0329.53035MR0378001DOI10.1007/BF01214381
- Chern, S. S., Carmo, M. do, Kobayashi, S., 10.1007/978-3-642-48272-4_2, Functional Analysis and Related Fields Springer, New York (1970), 59-75. (1970) Zbl0216.44001MR0273546DOI10.1007/978-3-642-48272-4_2
- A. A. de Barros, A. C. Brasil, Jr., L. A. M. de Sousa, Jr., 10.2996/kmj/1085143788, Kodai Math. J. 27 (2004), 45-56. (2004) Zbl1059.53047MR2042790DOI10.2996/kmj/1085143788
- Lima, E. L. de, Lima, H. F. de, 10.1007/s12215-018-0332-3, Rend. Circ. Mat. Palermo (2) 67 (2018), 533-537. (2018) Zbl1409.53054MR3912008DOI10.1007/s12215-018-0332-3
- Soufi, A. El, II., E. M. Harrell, Ilias, S., 10.1090/S0002-9947-08-04780-6, Trans. Am. Math. Soc. 361 (2009), 2337-2350. (2009) Zbl1162.58009MR2471921DOI10.1090/S0002-9947-08-04780-6
- H. B. Lawson, Jr., 10.2307/1970816, Ann. Math. 89 (1969), 187-197. (1969) Zbl0174.24901MR0238229DOI10.2307/1970816
- Meléndez, J., 10.1007/s00574-014-0055-9, Bull. Braz. Math. Soc. (N.S.) 45 (2014), 385-404. (2014) Zbl1319.53065MR3264798DOI10.1007/s00574-014-0055-9
- Okumura, M., 10.2307/2373587, Am. J. Math. 96 (1974), 207-213. (1974) Zbl0302.53028MR0353216DOI10.2307/2373587
- Perdomo, O., 10.1090/S0002-9939-02-06451-1, Proc. Am. Math. Soc. 130 (2002), 3379-3384. (2002) Zbl1014.53036MR1913017DOI10.1090/S0002-9939-02-06451-1
- Simons, J., 10.2307/1970556, Ann. Math. (2) 88 (1968), 62-105. (1968) Zbl0181.49702MR0233295DOI10.2307/1970556
- Wu, C., 10.1007/bf01198725, Arch. Math. 61 (1993), 277-284. (1993) Zbl0791.53056MR1231163DOI10.1007/bf01198725
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.