New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms

Jiancheng Liu; Rong Mi

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 881-890
  • ISSN: 0011-4642

Abstract

top
We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.

How to cite

top

Liu, Jiancheng, and Mi, Rong. "New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms." Czechoslovak Mathematical Journal 70.3 (2020): 881-890. <http://eudml.org/doc/296977>.

@article{Liu2020,
abstract = {We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.},
author = {Liu, Jiancheng, Mi, Rong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Jacobi operator; first eigenvalue; closed hypersurface},
language = {eng},
number = {3},
pages = {881-890},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms},
url = {http://eudml.org/doc/296977},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Liu, Jiancheng
AU - Mi, Rong
TI - New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 881
EP - 890
AB - We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.
LA - eng
KW - Jacobi operator; first eigenvalue; closed hypersurface
UR - http://eudml.org/doc/296977
ER -

References

top
  1. Alencar, H., Carmo, M. do, 10.1090/S0002-9939-1994-1172943-2, Proc. Am. Math. Soc. 120 (1994), 1223-1229. (1994) Zbl0802.53017MR1172943DOI10.1090/S0002-9939-1994-1172943-2
  2. Alías, L. J., On the stability index of minimal and constant mean curvature hypersurfaces in spheres, Rev. Unión Mat. Argent. 47 (2006-2007), 39-61. (2006) Zbl1139.53029MR2301375
  3. L. J. Alías, A. Barros, A. Brasil, Jr., 10.1090/S0002-9939-04-07559-8, Proc. Am. Math. Soc. 133 (2005), 875-884. (2005) Zbl1065.53046MR2113939DOI10.1090/S0002-9939-04-07559-8
  4. Alías, L. J., García-Martínez, S. C., 10.1007/s10711-011-9588-x, Geom. Dedicata 156 (2012), 31-47. (2012) Zbl1232.53046MR2863544DOI10.1007/s10711-011-9588-x
  5. Alías, L. J., Meléndez, J., Palmas, O., 10.1016/j.difgeo.2018.01.001, Differ. Geom. Appl. 58 (2018), 65-82. (2018) Zbl1387.53069MR3777748DOI10.1016/j.difgeo.2018.01.001
  6. Aquino, C. P., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L., 10.2989/16073606.2017.1305463, Quaest. Math. 40 (2017), 605-616. (2017) Zbl1426.53077MR3691472DOI10.2989/16073606.2017.1305463
  7. Barbosa, J. L., Carmo, M. do, Eschenburg, J., 10.1007/bf01161634, Math. Z. 197 (1988), 123-138. (1988) Zbl0653.53045MR0917854DOI10.1007/bf01161634
  8. Chavel, I., 10.1016/S0079-8169(08)60806-5, Pure and Applied Mathematics 115. Academic Press, Orlando (1984). (1984) Zbl0551.53001MR0768584DOI10.1016/S0079-8169(08)60806-5
  9. Chen, D., Cheng, Q.-M., 10.1007/s00526-017-1132-x, Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 50, 12 pages. (2017) Zbl1368.53042MR3626321DOI10.1007/s00526-017-1132-x
  10. Cheng, Q.-M., 10.1007/BF02566409, Comment. Math. Helv. 71 (1996), 60-69. (1996) Zbl0874.53046MR1371678DOI10.1007/BF02566409
  11. Cheng, Q.-M., 10.1112/S0024610701002587, J. Lond. Math. Soc., II. Ser. 64 (2001), 755-768. (2001) Zbl1023.53044MR1865560DOI10.1112/S0024610701002587
  12. Cheng, Q.-M., Nakagawa, H., 10.32917/hmj/1206454435, Hiroshima Math. J. 20 (1990), 1-10. (1990) Zbl0711.53045MR1050421DOI10.32917/hmj/1206454435
  13. Cheng, S.-Y., 10.1007/BF01214381, Math. Z. 143 (1975), 289-297. (1975) Zbl0329.53035MR0378001DOI10.1007/BF01214381
  14. Chern, S. S., Carmo, M. do, Kobayashi, S., 10.1007/978-3-642-48272-4_2, Functional Analysis and Related Fields Springer, New York (1970), 59-75. (1970) Zbl0216.44001MR0273546DOI10.1007/978-3-642-48272-4_2
  15. A. A. de Barros, A. C. Brasil, Jr., L. A. M. de Sousa, Jr., 10.2996/kmj/1085143788, Kodai Math. J. 27 (2004), 45-56. (2004) Zbl1059.53047MR2042790DOI10.2996/kmj/1085143788
  16. Lima, E. L. de, Lima, H. F. de, 10.1007/s12215-018-0332-3, Rend. Circ. Mat. Palermo (2) 67 (2018), 533-537. (2018) Zbl1409.53054MR3912008DOI10.1007/s12215-018-0332-3
  17. Soufi, A. El, II., E. M. Harrell, Ilias, S., 10.1090/S0002-9947-08-04780-6, Trans. Am. Math. Soc. 361 (2009), 2337-2350. (2009) Zbl1162.58009MR2471921DOI10.1090/S0002-9947-08-04780-6
  18. H. B. Lawson, Jr., 10.2307/1970816, Ann. Math. 89 (1969), 187-197. (1969) Zbl0174.24901MR0238229DOI10.2307/1970816
  19. Meléndez, J., 10.1007/s00574-014-0055-9, Bull. Braz. Math. Soc. (N.S.) 45 (2014), 385-404. (2014) Zbl1319.53065MR3264798DOI10.1007/s00574-014-0055-9
  20. Okumura, M., 10.2307/2373587, Am. J. Math. 96 (1974), 207-213. (1974) Zbl0302.53028MR0353216DOI10.2307/2373587
  21. Perdomo, O., 10.1090/S0002-9939-02-06451-1, Proc. Am. Math. Soc. 130 (2002), 3379-3384. (2002) Zbl1014.53036MR1913017DOI10.1090/S0002-9939-02-06451-1
  22. Simons, J., 10.2307/1970556, Ann. Math. (2) 88 (1968), 62-105. (1968) Zbl0181.49702MR0233295DOI10.2307/1970556
  23. Wu, C., 10.1007/bf01198725, Arch. Math. 61 (1993), 277-284. (1993) Zbl0791.53056MR1231163DOI10.1007/bf01198725

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.