On strongly affine extensions of commutative rings
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 251-260
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZeidi, Nabil. "On strongly affine extensions of commutative rings." Czechoslovak Mathematical Journal 70.1 (2020): 251-260. <http://eudml.org/doc/296978>.
@article{Zeidi2020,
abstract = {A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions.},
author = {Zeidi, Nabil},
journal = {Czechoslovak Mathematical Journal},
keywords = {strongly affine; Prüfer extension; finitely many intermediate algebras property extension; finite chain propery extension; normal pair; integrally closed pair; ring of invariants},
language = {eng},
number = {1},
pages = {251-260},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On strongly affine extensions of commutative rings},
url = {http://eudml.org/doc/296978},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Zeidi, Nabil
TI - On strongly affine extensions of commutative rings
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 251
EP - 260
AB - A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions.
LA - eng
KW - strongly affine; Prüfer extension; finitely many intermediate algebras property extension; finite chain propery extension; normal pair; integrally closed pair; ring of invariants
UR - http://eudml.org/doc/296978
ER -
References
top- Anderson, D. D., Dobbs, D. E., Mullins, B., The primitive element theorem for commutative algebra, Houston J. Math. 25 (1999), 603-623 corrigendum ibid. 28 217-219 2002. (1999) Zbl0999.13003MR1829123
- Ayache, A., Dobbs, D. E., 10.1142/S0219498814500753, J. Algebra Appl. 14 (2015), Article ID 1450075, 27 pages. (2015) Zbl1310.13012MR3257816DOI10.1142/S0219498814500753
- Ayache, A., Jaballah, A., 10.1007/PL00004598, Math. Z. 225 (1997), 49-65. (1997) Zbl0868.13007MR1451331DOI10.1007/PL00004598
- Nasr, M. Ben, Zeidi, N., 10.1142/S0219498817501857, J. Algebra Appl. 16 (2017), Article ID 1750185, 11 pages. (2017) Zbl1390.13028MR3703540DOI10.1142/S0219498817501857
- Davis, E. D., 10.1090/S0002-9947-1973-0325599-3, Trans. Amer. Math. Soc. 182 (1973), 175-185. (1973) Zbl0272.13004MR325599DOI10.1090/S0002-9947-1973-0325599-3
- Dobbs, D. E., 10.4153/CJM-1981-040-5, Can. J. Math. 33 (1981), 454-475. (1981) Zbl0466.13002MR617636DOI10.4153/CJM-1981-040-5
- Dobbs, D. E., 10.1216/JCA-2009-1-2-227, J. Comm. Algebra 1 (2009), 227-235. (2009) Zbl1184.13023MR2504933DOI10.1216/JCA-2009-1-2-227
- Dobbs, D. E., Mullins, B., Picavet, G., Picavet-L'Hermitte, M., 10.1081/AGB-200066123, Commun. Algebra 33 (2005), 3091-3119. (2005) Zbl1120.13009MR2175382DOI10.1081/AGB-200066123
- Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M., 10.1016/j.jalgebra.2012.07.055, J. Algebra 371 (2012), 391-429. (2012) Zbl1271.13022MR2975403DOI10.1016/j.jalgebra.2012.07.055
- Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M., 10.1080/00927872.2013.856440, Commun. Algebra 43 (2015), 1279-1316. (2015) Zbl1317.13016MR3298132DOI10.1080/00927872.2013.856440
- Dobbs, D. E., Shapiro, J., Descent of divisibility properties of integral domains to fixed rings, Houston J. Math. 32 (2006), 337-353. (2006) Zbl1109.13004MR2219318
- Ferrand, D., Olivier, J.-P., 10.1016/0021-8693(70)90020-7, J. Algebra 16 (1970), 461-471 French. (1970) Zbl0218.13011MR271079DOI10.1016/0021-8693(70)90020-7
- Gilmer, R., Multiplicative Ideal Theory, Pure and Applied Mathematics 12, Marcel Dekker, New York (1972). (1972) Zbl0248.13001MR0427289
- Gilmer, R., 10.1090/S0002-9939-02-06816-8, Proc. Am. Math. Soc. 131 (2003), 2337-2346. (2003) Zbl1017.13009MR1974630DOI10.1090/S0002-9939-02-06816-8
- Gilmer, R., Heinzer, W., 10.1016/0022-4049(85)90101-X, J. Pure Appl. Algebra 37 (1985), 237-264. (1985) Zbl0564.13009MR797865DOI10.1016/0022-4049(85)90101-X
- Gilmer, R., Hoffmann, J., 10.2140/pjm.1975.60.81, Pac. J. Math. 60 (1975), 81-85. (1975) Zbl0307.13011MR412175DOI10.2140/pjm.1975.60.81
- Jaballah, A., Finiteness of the set of intermediary rings in normal pairs, Saitama Math. J. 17 (1999), 59-61. (1999) Zbl1073.13500MR1740247
- Jaballah, A., 10.1007/s10587-010-0002-x, Czech. Math. J. 60 (2010), 117-124. (2010) Zbl1224.13011MR2595076DOI10.1007/s10587-010-0002-x
- Kaplansky, I., Commutative Rings, University of Chicago Press, Chicago (1974). (1974) Zbl0296.13001MR0345945
- Knebusch, M., Zhang, D., 10.1007/b84018, Lecture Notes in Mathematics 1791, Springer, Berlin (2002). (2002) Zbl1033.13001MR1937245DOI10.1007/b84018
- Kumar, R., Gaur, A., 10.1142/S0219498818500639, J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. (2018) Zbl1395.13006MR3786742DOI10.1142/S0219498818500639
- Papick, I. J., 10.2140/pjm.1978.78.161, Pac. J. Math. 78 (1978), 161-172. (1978) Zbl0363.13010MR513292DOI10.2140/pjm.1978.78.161
- Picavet, G., Picavet-L'Hermitte, M., Some more combinatorics results on Nagata extensions, Palest. J. Math. 5 (2016), 49-62. (2016) Zbl1346.13012MR3477615
- Picavet, G., Picavet-L'Hermitte, M., 10.1007/978-3-319-65874-2_16, Rings, Polynomials and Modules M. Fontana et al. Springer, Cham (2017), 307-336. (2017) Zbl1400.13012MR3751703DOI10.1007/978-3-319-65874-2_16
- Schmidt, A., Properties of Rings and of Ring Extensions That are Invariant Under Group Action. PhD Thesis, George Mason University, Spring (2015), Available at http://hdl.handle.net/1920/9627. (2015) MR3389167
- Wadsworth, A. R., 10.1090/S0002-9947-1974-0349665-2, Trans. Am. Math. Soc. 195 (1974), 201-211. (1974) Zbl0294.13010MR349665DOI10.1090/S0002-9947-1974-0349665-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.