On strongly affine extensions of commutative rings

Nabil Zeidi

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 251-260
  • ISSN: 0011-4642

Abstract

top
A ring extension R S is said to be strongly affine if each R -subalgebra of S is a finite-type R -algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if R is a quasi-local ring of finite dimension, then R S is integrally closed and strongly affine if and only if R S is a Prüfer extension (i.e. ( R , S ) is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let G be a subgroup of the automorphism group of S such that R is invariant under action by G . If R S is strongly affine, then R G S G is strongly affine under some conditions.

How to cite

top

Zeidi, Nabil. "On strongly affine extensions of commutative rings." Czechoslovak Mathematical Journal 70.1 (2020): 251-260. <http://eudml.org/doc/296978>.

@article{Zeidi2020,
abstract = {A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions.},
author = {Zeidi, Nabil},
journal = {Czechoslovak Mathematical Journal},
keywords = {strongly affine; Prüfer extension; finitely many intermediate algebras property extension; finite chain propery extension; normal pair; integrally closed pair; ring of invariants},
language = {eng},
number = {1},
pages = {251-260},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On strongly affine extensions of commutative rings},
url = {http://eudml.org/doc/296978},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Zeidi, Nabil
TI - On strongly affine extensions of commutative rings
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 251
EP - 260
AB - A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions.
LA - eng
KW - strongly affine; Prüfer extension; finitely many intermediate algebras property extension; finite chain propery extension; normal pair; integrally closed pair; ring of invariants
UR - http://eudml.org/doc/296978
ER -

References

top
  1. Anderson, D. D., Dobbs, D. E., Mullins, B., The primitive element theorem for commutative algebra, Houston J. Math. 25 (1999), 603-623 corrigendum ibid. 28 217-219 2002. (1999) Zbl0999.13003MR1829123
  2. Ayache, A., Dobbs, D. E., 10.1142/S0219498814500753, J. Algebra Appl. 14 (2015), Article ID 1450075, 27 pages. (2015) Zbl1310.13012MR3257816DOI10.1142/S0219498814500753
  3. Ayache, A., Jaballah, A., 10.1007/PL00004598, Math. Z. 225 (1997), 49-65. (1997) Zbl0868.13007MR1451331DOI10.1007/PL00004598
  4. Nasr, M. Ben, Zeidi, N., 10.1142/S0219498817501857, J. Algebra Appl. 16 (2017), Article ID 1750185, 11 pages. (2017) Zbl1390.13028MR3703540DOI10.1142/S0219498817501857
  5. Davis, E. D., 10.1090/S0002-9947-1973-0325599-3, Trans. Amer. Math. Soc. 182 (1973), 175-185. (1973) Zbl0272.13004MR325599DOI10.1090/S0002-9947-1973-0325599-3
  6. Dobbs, D. E., 10.4153/CJM-1981-040-5, Can. J. Math. 33 (1981), 454-475. (1981) Zbl0466.13002MR617636DOI10.4153/CJM-1981-040-5
  7. Dobbs, D. E., 10.1216/JCA-2009-1-2-227, J. Comm. Algebra 1 (2009), 227-235. (2009) Zbl1184.13023MR2504933DOI10.1216/JCA-2009-1-2-227
  8. Dobbs, D. E., Mullins, B., Picavet, G., Picavet-L'Hermitte, M., 10.1081/AGB-200066123, Commun. Algebra 33 (2005), 3091-3119. (2005) Zbl1120.13009MR2175382DOI10.1081/AGB-200066123
  9. Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M., 10.1016/j.jalgebra.2012.07.055, J. Algebra 371 (2012), 391-429. (2012) Zbl1271.13022MR2975403DOI10.1016/j.jalgebra.2012.07.055
  10. Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M., 10.1080/00927872.2013.856440, Commun. Algebra 43 (2015), 1279-1316. (2015) Zbl1317.13016MR3298132DOI10.1080/00927872.2013.856440
  11. Dobbs, D. E., Shapiro, J., Descent of divisibility properties of integral domains to fixed rings, Houston J. Math. 32 (2006), 337-353. (2006) Zbl1109.13004MR2219318
  12. Ferrand, D., Olivier, J.-P., 10.1016/0021-8693(70)90020-7, J. Algebra 16 (1970), 461-471 French. (1970) Zbl0218.13011MR271079DOI10.1016/0021-8693(70)90020-7
  13. Gilmer, R., Multiplicative Ideal Theory, Pure and Applied Mathematics 12, Marcel Dekker, New York (1972). (1972) Zbl0248.13001MR0427289
  14. Gilmer, R., 10.1090/S0002-9939-02-06816-8, Proc. Am. Math. Soc. 131 (2003), 2337-2346. (2003) Zbl1017.13009MR1974630DOI10.1090/S0002-9939-02-06816-8
  15. Gilmer, R., Heinzer, W., 10.1016/0022-4049(85)90101-X, J. Pure Appl. Algebra 37 (1985), 237-264. (1985) Zbl0564.13009MR797865DOI10.1016/0022-4049(85)90101-X
  16. Gilmer, R., Hoffmann, J., 10.2140/pjm.1975.60.81, Pac. J. Math. 60 (1975), 81-85. (1975) Zbl0307.13011MR412175DOI10.2140/pjm.1975.60.81
  17. Jaballah, A., Finiteness of the set of intermediary rings in normal pairs, Saitama Math. J. 17 (1999), 59-61. (1999) Zbl1073.13500MR1740247
  18. Jaballah, A., 10.1007/s10587-010-0002-x, Czech. Math. J. 60 (2010), 117-124. (2010) Zbl1224.13011MR2595076DOI10.1007/s10587-010-0002-x
  19. Kaplansky, I., Commutative Rings, University of Chicago Press, Chicago (1974). (1974) Zbl0296.13001MR0345945
  20. Knebusch, M., Zhang, D., 10.1007/b84018, Lecture Notes in Mathematics 1791, Springer, Berlin (2002). (2002) Zbl1033.13001MR1937245DOI10.1007/b84018
  21. Kumar, R., Gaur, A., 10.1142/S0219498818500639, J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. (2018) Zbl1395.13006MR3786742DOI10.1142/S0219498818500639
  22. Papick, I. J., 10.2140/pjm.1978.78.161, Pac. J. Math. 78 (1978), 161-172. (1978) Zbl0363.13010MR513292DOI10.2140/pjm.1978.78.161
  23. Picavet, G., Picavet-L'Hermitte, M., Some more combinatorics results on Nagata extensions, Palest. J. Math. 5 (2016), 49-62. (2016) Zbl1346.13012MR3477615
  24. Picavet, G., Picavet-L'Hermitte, M., 10.1007/978-3-319-65874-2_16, Rings, Polynomials and Modules M. Fontana et al. Springer, Cham (2017), 307-336. (2017) Zbl1400.13012MR3751703DOI10.1007/978-3-319-65874-2_16
  25. Schmidt, A., Properties of Rings and of Ring Extensions That are Invariant Under Group Action. PhD Thesis, George Mason University, Spring (2015), Available at http://hdl.handle.net/1920/9627. (2015) MR3389167
  26. Wadsworth, A. R., 10.1090/S0002-9947-1974-0349665-2, Trans. Am. Math. Soc. 195 (1974), 201-211. (1974) Zbl0294.13010MR349665DOI10.1090/S0002-9947-1974-0349665-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.