Convergence acceleration of shifted transformations for totally nonnegative Hessenberg matrices
Akiko Fukuda; Yusaku Yamamoto; Masashi Iwasaki; Emiko Ishiwata; Yoshimasa Nakamura
Applications of Mathematics (2020)
- Volume: 65, Issue: 5, page 677-702
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFukuda, Akiko, et al. "Convergence acceleration of shifted $LR$ transformations for totally nonnegative Hessenberg matrices." Applications of Mathematics 65.5 (2020): 677-702. <http://eudml.org/doc/296992>.
@article{Fukuda2020,
abstract = {We design shifted $LR$ transformations based on the integrable discrete hungry Toda equation to compute eigenvalues of totally nonnegative matrices of the banded Hessenberg form. The shifted $LR$ transformation can be regarded as an extension of the extension employed in the well-known dqds algorithm for the symmetric tridiagonal eigenvalue problem. In this paper, we propose a new and effective shift strategy for the sequence of shifted $LR$ transformations by considering the concept of the Newton shift. We show that the shifted $LR$ transformations with the resulting shift strategy converge with order $2-\epsilon $ for arbitrary $\epsilon >0$.},
author = {Fukuda, Akiko, Yamamoto, Yusaku, Iwasaki, Masashi, Ishiwata, Emiko, Nakamura, Yoshimasa},
journal = {Applications of Mathematics},
keywords = {$LR$ transformation; totally nonnegative matrix; Newton shift; convergence rate},
language = {eng},
number = {5},
pages = {677-702},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Convergence acceleration of shifted $LR$ transformations for totally nonnegative Hessenberg matrices},
url = {http://eudml.org/doc/296992},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Fukuda, Akiko
AU - Yamamoto, Yusaku
AU - Iwasaki, Masashi
AU - Ishiwata, Emiko
AU - Nakamura, Yoshimasa
TI - Convergence acceleration of shifted $LR$ transformations for totally nonnegative Hessenberg matrices
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 5
SP - 677
EP - 702
AB - We design shifted $LR$ transformations based on the integrable discrete hungry Toda equation to compute eigenvalues of totally nonnegative matrices of the banded Hessenberg form. The shifted $LR$ transformation can be regarded as an extension of the extension employed in the well-known dqds algorithm for the symmetric tridiagonal eigenvalue problem. In this paper, we propose a new and effective shift strategy for the sequence of shifted $LR$ transformations by considering the concept of the Newton shift. We show that the shifted $LR$ transformations with the resulting shift strategy converge with order $2-\epsilon $ for arbitrary $\epsilon >0$.
LA - eng
KW - $LR$ transformation; totally nonnegative matrix; Newton shift; convergence rate
UR - http://eudml.org/doc/296992
ER -
References
top- Bauer, F. L., qd-method with Newton shift, Technical Report 56. Computer Science Department, Stanford University, Stanford (1967). (1967)
- Fernando, K. V., Parlett, B. N., 10.1007/s002110050024, Numer. Math. 67 (1994), 191-229. (1994) Zbl0814.65036MR1262781DOI10.1007/s002110050024
- Fukuda, A., Ishiwata, E., Yamamoto, Y., Iwasaki, M., Nakamura, Y., 10.1007/s10231-011-0231-0, Ann. Mat. Pura Appl. 192 (2013), 423-445. (2013) Zbl1349.37064MR3061107DOI10.1007/s10231-011-0231-0
- Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., Nakamura, Y., 10.1007/s11075-012-9606-6, Numer. Algorithms 61 (2012), 243-260. (2012) Zbl1257.65019MR2969294DOI10.1007/s11075-012-9606-6
- Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., Nakamura, Y., 10.1007/s00605-012-0404-y, Monatsh. Math. 170 (2013), 11-26. (2013) Zbl1311.65036MR3032671DOI10.1007/s00605-012-0404-y
- Golub, G. H., Loan, C. F. Van, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (2013). (2013) Zbl1268.65037MR3024913
- Horn, R. A., Johnson, C. R., 10.1017/CBO9780511810817, Cambridge University Press, Cambridge (1985). (1985) Zbl0576.15001MR0832183DOI10.1017/CBO9780511810817
- Team, LAPACK, LAPACK: Linear Algebra PACKage, Available at http://www.netlib.org/lapack/.
- Li, C.-K., Mathias, R., 10.1016/S0024-3795(01)00240-3, Linear Algebra Appl. 341 (2002), 35-44. (2002) Zbl0997.15014MR1873607DOI10.1016/S0024-3795(01)00240-3
- Parlett, B. N., 10.1017/S0962492900002580, Acta Numerica 4 (1995), 459-491. (1995) Zbl0835.65059MR1352476DOI10.1017/S0962492900002580
- Pinkus, A., 10.1017/CBO9780511691713, Cambridge Tracts in Mathematics 181. Cambridge University Press, Cambridge (2009). (2009) Zbl1185.15028MR2584277DOI10.1017/CBO9780511691713
- Reinsch, C., Bauer, F. L., 10.1007/BF02161847, Numer. Math. 11 (1968), 264-272. (1968) Zbl0164.45201MR1553960DOI10.1007/BF02161847
- Rutishauser, H., 10.1007/978-1-4612-3468-5, Birkhäuser, Boston (1990). (1990) Zbl0699.65002MR1102678DOI10.1007/978-1-4612-3468-5
- Sun, J.-Q., Hu, X.-B., Tam, H.-W., 10.1002/nla.754, Numer. Linear Algebra Appl. 18 (2011), 261-274. (2011) Zbl1249.65079MR2791246DOI10.1002/nla.754
- Tokihiro, T., Nagai, A., Satsuma, J., 10.1088/0266-5611/15/6/314, Inverse Probl. 15 (1999), 1639-1662. (1999) Zbl1138.37341MR1733220DOI10.1088/0266-5611/15/6/314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.