Multi-variate correlation and mixtures of product measures
Kybernetika (2020)
- Volume: 56, Issue: 3, page 459-499
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAustin, Tim. "Multi-variate correlation and mixtures of product measures." Kybernetika 56.3 (2020): 459-499. <http://eudml.org/doc/297001>.
@article{Austin2020,
abstract = {Total correlation (‘TC’) and dual total correlation (‘DTC’) are two classical ways to quantify the correlation among an $n$-tuple of random variables. They both reduce to mutual information when $n=2$. The first part of this paper sets up the theory of TC and DTC for general random variables, not necessarily finite-valued. This generality has not been exposed in the literature before. The second part considers the structural implications when a joint distribution $\mu $ has small TC or DTC. If $\mathrm \{TC\}(\mu ) = o(n)$, then $\mu $ is close to a product measure according to a suitable transportation metric: this follows directly from Marton’s classical transportation-entropy inequality. If $\mathrm \{DTC\}(\mu ) = o(n)$, then the structural consequence is more complicated: $\mu $ is a mixture of a controlled number of terms, most of them close to product measures in the transportation metric. This is the main new result of the paper.},
author = {Austin, Tim},
journal = {Kybernetika},
keywords = {total correlation; dual total correlation; transportation inequalities; mixtures of products},
language = {eng},
number = {3},
pages = {459-499},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Multi-variate correlation and mixtures of product measures},
url = {http://eudml.org/doc/297001},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Austin, Tim
TI - Multi-variate correlation and mixtures of product measures
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 459
EP - 499
AB - Total correlation (‘TC’) and dual total correlation (‘DTC’) are two classical ways to quantify the correlation among an $n$-tuple of random variables. They both reduce to mutual information when $n=2$. The first part of this paper sets up the theory of TC and DTC for general random variables, not necessarily finite-valued. This generality has not been exposed in the literature before. The second part considers the structural implications when a joint distribution $\mu $ has small TC or DTC. If $\mathrm {TC}(\mu ) = o(n)$, then $\mu $ is close to a product measure according to a suitable transportation metric: this follows directly from Marton’s classical transportation-entropy inequality. If $\mathrm {DTC}(\mu ) = o(n)$, then the structural consequence is more complicated: $\mu $ is a mixture of a controlled number of terms, most of them close to product measures in the transportation metric. This is the main new result of the paper.
LA - eng
KW - total correlation; dual total correlation; transportation inequalities; mixtures of products
UR - http://eudml.org/doc/297001
ER -
References
top- Abdallah, S. A., Plumbley, M. D., Predictive Information, Multi-Information and Binding Information., Technical Report C4DM-TR-10-10, Queen Mary University of London, 2010.
- Ahlswede, R., An elementary proof of the strong converse theorem for the multiple-access channel., J. Combin. Inform. System Sci. 7 (1982), 3, 216-230. MR0724363
- Ahlswede, R., 10.1109/tit.1985.1057102, IEEE Trans. Inform. Theory 31 (1985), 6, 721-726. MR0823593DOI10.1109/tit.1985.1057102
- Austin, T., 10.1214/19-aop1352, Ann. Probab. 47 (2019), 6, 4002-4023. MR4038047DOI10.1214/19-aop1352
- Austin, T., 10.1007/s10240-018-0098-3, Publ. Math. Inst. Hautes Etudes Sci. 128 (2018), 1-119. MR3905465DOI10.1007/s10240-018-0098-3
- Ay, N., Olbrich, E., Bertschinger, N., Jost, J., A unifying framework for complexity measures of finite systems., Working Paper 06-08-028, Santa Fe Institute, 2006.
- Balister, P., Bollobás, B., 10.1007/s00493-012-2453-1, Combinatorica 32 (2012), 2, 125-141. MR2927635DOI10.1007/s00493-012-2453-1
- Chatterjee, S., Dembo, A., 10.1016/j.aim.2016.05.017, Adv. Math. 299 (2016), 396-450. MR3519474DOI10.1016/j.aim.2016.05.017
- Chung, F. R. K., Graham, R. L., Frankl, P., Shearer, J. B., 10.1016/0097-3165(86)90019-1, J. Combin. Theory Ser. A 43 (1986), 1, 23-37. MR0859293DOI10.1016/0097-3165(86)90019-1
- Coja-Oghlan, A., Krzakala, F., Perkins, W., Zdeborová, L., 10.1016/j.aim.2018.05.029, Adv. Math. 333 (2018), 694-795. MR3818090DOI10.1016/j.aim.2018.05.029
- Coja-Oghlan, A., Perkins, W., 10.1007/s00220-019-03387-7, Comm. Math. Phys. 366 (2019), 1, 173-201. MR3919446DOI10.1007/s00220-019-03387-7
- Cover, T. M., Thomas, J. A., Elements of Information Theory. Second edition., Wiley-Interscience, John Wiley and Sons, Hoboken, NJ 2006. MR2239987
- Crooks, G., On Measures of Entropy and Information., Technical note.
- Csiszár, I., 10.1214/aop/1176993227, Ann. Probab. 12 (1984), 3, 768-793. MR0744233DOI10.1214/aop/1176993227
- Csiszár, I., Narayan, P., 10.1109/tit.2004.838380, IEEE Trans. Inform. Theory 50 (2004), 12, 3047-3061. MR2103483DOI10.1109/tit.2004.838380
- Dembo, A., Zeitouni, O., 10.1007/978-1-4612-5320-4, Springer-Verlag, Stochastic Modelling and Applied Probability 38, Berlin 2010. MR2571413DOI10.1007/978-1-4612-5320-4
- Dobrušin, R. L., A general formulation of Shannon's fundamental theorem in the theory of information., Dokl. Akad. Nauk SSSR 126 (1959), 474-477. MR0107573
- Dougherty, R., Freiling, C., Zeger, K., 10.1109/tit.2007.896862, IEEE Trans. Inform. Theory 53 (2007), 6, 1949-1969. MR2321860DOI10.1109/tit.2007.896862
- Dudley, R. M., 10.1017/cbo9780511755347, Cambridge University Press, Cambridge Studies in Advanced Mathematics 74, Cambridge 2002. Zbl1023.60001MR1932358DOI10.1017/cbo9780511755347
- Dueck, G., The strong converse of the coding theorem for the multiple-access channel., J. Combin. Inform. System Sci. 6 (1981), 3, 187-196. MR0652388
- Eldan, R., 10.1007/s00039-018-0461-z, Geometr. Funct. Anal. 28 (2018), 6, 1548-1596. MR3881829DOI10.1007/s00039-018-0461-z
- Eldan, R., Gross, R., , Preprint, available online at MR3861824DOI
- Eldan, R., Gross, R., 10.1214/18-EJP159, Electron. J. Probab. 23 (2018), 35, 24. MR3798245DOI10.1214/18-EJP159
- Ellis, D., Friedgut, E., Kindler, G., Yehudayoff, A., 10.19086/da.784, Discrete Anal. 10 (2016), 28 pp. MR3555193DOI10.19086/da.784
- Fritz, T., Chaves, R., 10.1109/tit.2012.2222863, IEEE Trans. Inform. Theory 59 (2013), 2, 803-817. MR3015697DOI10.1109/tit.2012.2222863
- Fujishige, S., 10.1016/s0019-9958(78)91063-x, Inform. Control 39 (1978), 1, 55-72. MR0514262DOI10.1016/s0019-9958(78)91063-x
- Gelfand, I., Kolmogorov, A., Yaglom, I., On the general definition of the quantity of information., Doklady Akad. Nauk SSSR 111 (1956), 4, 745-748. MR0084440
- Han, T. S., 10.1016/s0019-9958(75)80004-0, Inform. Control 29 (1975), 4, 337-368. MR0453264DOI10.1016/s0019-9958(75)80004-0
- Han, T. S., 10.1016/s0019-9958(78)90275-9, Inform. Control 36 (1978), 2, 133-156. MR0464499DOI10.1016/s0019-9958(78)90275-9
- Kolmogorov, A. N., 10.1016/s0019-9958(78)90275-9, IEEE Trans. Inform. Theory IT-2 (1956), 102-108. MR0097987DOI10.1016/s0019-9958(78)90275-9
- Ledoux, M., 10.1051/ps:1997103, ESAIM Probab. Statist. 1 (1995/97), 63-87. MR1399224DOI10.1051/ps:1997103
- Madiman, M., Tetali, P., 10.1109/tit.2010.2046253, IEEE Trans. Inform. Theory 56 (2010), 6, 2699-2713. MR2683430DOI10.1109/tit.2010.2046253
- Makarychev, K., Makarychev, Y., Romashchenko, A., Vereshchagin, N., 10.4310/cis.2002.v2.n2.a3, Commun. Inf. Syst. 2 (2002), 2, 147-165. MR1958013DOI10.4310/cis.2002.v2.n2.a3
- Marton, K., 10.1109/tit.1986.1057176, IEEE Trans. Inform. Theory 32 (1986), 3, 445-446. MR0838213DOI10.1109/tit.1986.1057176
- Marton, K., 10.1214/aop/1039639365, Ann. Probab. 24 (1996), 2, 857-866. MR1404531DOI10.1214/aop/1039639365
- Matúš, F., 10.1109/tit.2006.887090, IEEE Trans. Inform. Theory 53 (2007), 1, 320-330. MR2292891DOI10.1109/tit.2006.887090
- McDiarmid, C., 10.1017/cbo9781107359949.008, In: Surveys in Combinatorics, Norwich 1989, London Math. Soc. Lecture Note Ser. 141, Cambridge Univ. Press, Cambridge 1989, pp. 148-188. MR1036755DOI10.1017/cbo9781107359949.008
- McGill, W. J., 10.1109/tit.1954.1057469, Trans. I.R.E. PGIT-4 (1954), 93-111. MR0088155DOI10.1109/tit.1954.1057469
- Pearl, J., Paz, A., Graphoids: a graph-based logic for reasoning about relevance relations., In: Advances in Artificial Intelligence - II (B. Du Boulay, D. Hogg, and L. Steels, eds.), North Holland, Amsterdam 1987, pp. 357-363.
- Perez, A., 10.1137/1104007, Theory Probab. Appl. 4 (1959), 99-102. MR0122613DOI10.1137/1104007
- Perez, A., -admissible simplifications of the dependence structure of a set of random variables., Kybernetika 13 (1977), 6, 439-449. MR0472224
- Pinsker, M. S., Information and information Stability of Random Variables and Processes., Holden-Day, Inc., San Francisco 1964. MR0213190
- Radhakrishnan, J., Entropy and counting., In: Computational Mathematics, Modelling and Applications (IIT Kharagpur, Golden Jubilee Volume) (J. Mishra, ed.), Narosa Publishers, 2001, pp. 146-168.
- Schneidman, E., Still, S., Berry, M. J., Bialek, W., 10.1103/physrevlett.91.238701, Phys. Rev. Lett. 91 (2003), 238701. DOI10.1103/physrevlett.91.238701
- Studený, M., Vejnarová, J., 10.1007/978-94-011-5014-9_10, In: Proc. NATO Advanced Study Institute on Learning in Graphical Models, Kluwer Academic Publishers, Norwell 1998, pp. 261-297. DOI10.1007/978-94-011-5014-9_10
- Timme, N., Alford, W., Flecker, B., Beggs, J. M., 10.1007/s10827-013-0458-4, J. Comput. Neurosci. 36 (2014), 2, 119-140. MR3176934DOI10.1007/s10827-013-0458-4
- Watanabe, S., 10.1147/rd.41.0066, IBM J. Res. Develop. 4 (1960), 66-82. MR0109755DOI10.1147/rd.41.0066
- Yan, J., , Preprint, available online at MR4108123DOI
- Zhang, Z., Yeung, R. W., 10.1109/18.681320, IEEE Trans. Inform. Theory 44 (1998), 4, 1440-1452. MR1665794DOI10.1109/18.681320
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.