Oscillation criteria for fourth order half-linear differential equations
Jaroslav Jaroš; Kusano Takaŝi; Tomoyuki Tanigawa
Archivum Mathematicum (2020)
- Volume: 056, Issue: 2, page 115-125
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topJaroš, Jaroslav, Takaŝi, Kusano, and Tanigawa, Tomoyuki. "Oscillation criteria for fourth order half-linear differential equations." Archivum Mathematicum 056.2 (2020): 115-125. <http://eudml.org/doc/297002>.
@article{Jaroš2020,
abstract = {Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form \begin\{equation*\} \big (|y^\{\prime \prime \}|^\alpha \{\rm sgn\ \} y^\{\prime \prime \}\big )^\{\prime \prime \} + q(t)|y|^\alpha \{\rm sgn\}\ y = 0, \quad t \ge a > 0, A \end\{equation*\}
where $\alpha > 0$ is a constant and $q(t)$ is positive continuous function on $[a,\infty )$, are given in terms of an increasing continuously differentiable function $\omega (t)$ from $[a,\infty )$ to $(0,\infty )$ which satisfies $\int _a^\infty 1/(t\omega (t))\,dt < \infty $.},
author = {Jaroš, Jaroslav, Takaŝi, Kusano, Tanigawa, Tomoyuki},
journal = {Archivum Mathematicum},
keywords = {half-linear differential equation; oscillatory solutions},
language = {eng},
number = {2},
pages = {115-125},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Oscillation criteria for fourth order half-linear differential equations},
url = {http://eudml.org/doc/297002},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Jaroš, Jaroslav
AU - Takaŝi, Kusano
AU - Tanigawa, Tomoyuki
TI - Oscillation criteria for fourth order half-linear differential equations
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 2
SP - 115
EP - 125
AB - Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form \begin{equation*} \big (|y^{\prime \prime }|^\alpha {\rm sgn\ } y^{\prime \prime }\big )^{\prime \prime } + q(t)|y|^\alpha {\rm sgn}\ y = 0, \quad t \ge a > 0, A \end{equation*}
where $\alpha > 0$ is a constant and $q(t)$ is positive continuous function on $[a,\infty )$, are given in terms of an increasing continuously differentiable function $\omega (t)$ from $[a,\infty )$ to $(0,\infty )$ which satisfies $\int _a^\infty 1/(t\omega (t))\,dt < \infty $.
LA - eng
KW - half-linear differential equation; oscillatory solutions
UR - http://eudml.org/doc/297002
ER -
References
top- Kamo, K., Usami, H., Oscillation theorems for fourth-order quasilinear ordinary differential equations, Studia Sci. Math. Hungar. 39 (2002), 385–406. (2002) Zbl1026.34054MR1956947
- Kamo, K., Usami, H., 10.1007/s10474-011-0127-x, Acta Math. Hungar. 132 (3) (2011), 207–222. (2011) Zbl1249.34111MR2818904DOI10.1007/s10474-011-0127-x
- Kiguradze, I.T., On the oscillation of solutions of the equation , Mat. Sb. 65 (2) (1964), 172–187. (1964) MR0173060
- Kusano, T., Manojlović, J., Tanigawa, T., 10.1216/RMJ-2011-41-1-249, Rocky Mountain J. Math. 41 (1) (2011), 249–274. (2011) Zbl1232.34053MR2845944DOI10.1216/RMJ-2011-41-1-249
- Kusano, T., Tanigawa, T., On the structure of positive solutions of a class of fourth order nonlinear differential equations, Ann. Mat. Pura Appl. 85 (2006), 521–536. (2006) MR2230581
- Leighton, W., Nehari, Z., 10.1090/S0002-9947-1958-0102639-X, Trans. Amer. Math. Soc. 89 (1958), 325–377. (1958) MR0102639DOI10.1090/S0002-9947-1958-0102639-X
- Marić, V., 10.1007/BFb0103952, Lecture Notes in Math. 1726 (2000), Springer Verlag, Berlin. (2000) MR1753584DOI10.1007/BFb0103952
- Naito, M., Wu, F., 10.1023/B:AMHU.0000023215.24975.ee, Acta Math. Hungar. 102 (3) (2004), 177–202. (2004) MR2035369DOI10.1023/B:AMHU.0000023215.24975.ee
- Naito, M., Wu, F., 10.1016/j.na.2004.02.012, Nonlinear Anal. 57 (2) (2004), 253–363. (2004) MR2056430DOI10.1016/j.na.2004.02.012
- Švec, M., Sur le compontement asymptotique des intégrales de l’equation différetielle , Czechoslovak Math. J. 8 (83) (1958), 230–245. (1958) MR0101355
- Swanson, C.A., Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968. (1968) Zbl0191.09904MR0463570
- Tanigawa, T., 10.32917/hmj/1150997976, Hiroshima Math. J. 33 (2003), 297–316. (2003) MR2040899DOI10.32917/hmj/1150997976
- Tanigawa, T., Oscillation criteria for a class of higher order nonlinear differential equations, Mem. Differential Equations Math. Phys. 37 (2006), 137–152. (2006) MR2223229
- Wu, F., Nonoscillatory solutions of fourth order quasilinear differential equations, Funkcial. Ekvac. 45 (1) (2002), 71–88. (2002) MR1913681
- Wu, F., 10.1016/j.jmaa.2011.11.061, J. Math. Anal. Appl. 389 (2012), 632–646. (2012) Zbl1244.34054MR2876527DOI10.1016/j.jmaa.2011.11.061
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.