Oscillation criteria for fourth order half-linear differential equations

Jaroslav Jaroš; Kusano Takaŝi; Tomoyuki Tanigawa

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 2, page 115-125
  • ISSN: 0044-8753

Abstract

top
Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form ( | y ' ' | α sgn y ' ' ) ' ' + q ( t ) | y | α sgn y = 0 , t a > 0 , A where α > 0 is a constant and q ( t ) is positive continuous function on [ a , ) , are given in terms of an increasing continuously differentiable function ω ( t ) from [ a , ) to ( 0 , ) which satisfies a 1 / ( t ω ( t ) ) d t < .

How to cite

top

Jaroš, Jaroslav, Takaŝi, Kusano, and Tanigawa, Tomoyuki. "Oscillation criteria for fourth order half-linear differential equations." Archivum Mathematicum 056.2 (2020): 115-125. <http://eudml.org/doc/297002>.

@article{Jaroš2020,
abstract = {Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form \begin\{equation*\} \big (|y^\{\prime \prime \}|^\alpha \{\rm sgn\ \} y^\{\prime \prime \}\big )^\{\prime \prime \} + q(t)|y|^\alpha \{\rm sgn\}\ y = 0, \quad t \ge a > 0, A \end\{equation*\} where $\alpha > 0$ is a constant and $q(t)$ is positive continuous function on $[a,\infty )$, are given in terms of an increasing continuously differentiable function $\omega (t)$ from $[a,\infty )$ to $(0,\infty )$ which satisfies $\int _a^\infty 1/(t\omega (t))\,dt < \infty $.},
author = {Jaroš, Jaroslav, Takaŝi, Kusano, Tanigawa, Tomoyuki},
journal = {Archivum Mathematicum},
keywords = {half-linear differential equation; oscillatory solutions},
language = {eng},
number = {2},
pages = {115-125},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Oscillation criteria for fourth order half-linear differential equations},
url = {http://eudml.org/doc/297002},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Jaroš, Jaroslav
AU - Takaŝi, Kusano
AU - Tanigawa, Tomoyuki
TI - Oscillation criteria for fourth order half-linear differential equations
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 2
SP - 115
EP - 125
AB - Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form \begin{equation*} \big (|y^{\prime \prime }|^\alpha {\rm sgn\ } y^{\prime \prime }\big )^{\prime \prime } + q(t)|y|^\alpha {\rm sgn}\ y = 0, \quad t \ge a > 0, A \end{equation*} where $\alpha > 0$ is a constant and $q(t)$ is positive continuous function on $[a,\infty )$, are given in terms of an increasing continuously differentiable function $\omega (t)$ from $[a,\infty )$ to $(0,\infty )$ which satisfies $\int _a^\infty 1/(t\omega (t))\,dt < \infty $.
LA - eng
KW - half-linear differential equation; oscillatory solutions
UR - http://eudml.org/doc/297002
ER -

References

top
  1. Kamo, K., Usami, H., Oscillation theorems for fourth-order quasilinear ordinary differential equations, Studia Sci. Math. Hungar. 39 (2002), 385–406. (2002) Zbl1026.34054MR1956947
  2. Kamo, K., Usami, H., 10.1007/s10474-011-0127-x, Acta Math. Hungar. 132 (3) (2011), 207–222. (2011) Zbl1249.34111MR2818904DOI10.1007/s10474-011-0127-x
  3. Kiguradze, I.T., On the oscillation of solutions of the equation d m u / d t m + a ( t ) | u | n sign u = 0 , Mat. Sb. 65 (2) (1964), 172–187. (1964) MR0173060
  4. Kusano, T., Manojlović, J., Tanigawa, T., 10.1216/RMJ-2011-41-1-249, Rocky Mountain J. Math. 41 (1) (2011), 249–274. (2011) Zbl1232.34053MR2845944DOI10.1216/RMJ-2011-41-1-249
  5. Kusano, T., Tanigawa, T., On the structure of positive solutions of a class of fourth order nonlinear differential equations, Ann. Mat. Pura Appl. 85 (2006), 521–536. (2006) MR2230581
  6. Leighton, W., Nehari, Z., 10.1090/S0002-9947-1958-0102639-X, Trans. Amer. Math. Soc. 89 (1958), 325–377. (1958) MR0102639DOI10.1090/S0002-9947-1958-0102639-X
  7. Marić, V., 10.1007/BFb0103952, Lecture Notes in Math. 1726 (2000), Springer Verlag, Berlin. (2000) MR1753584DOI10.1007/BFb0103952
  8. Naito, M., Wu, F., 10.1023/B:AMHU.0000023215.24975.ee, Acta Math. Hungar. 102 (3) (2004), 177–202. (2004) MR2035369DOI10.1023/B:AMHU.0000023215.24975.ee
  9. Naito, M., Wu, F., 10.1016/j.na.2004.02.012, Nonlinear Anal. 57 (2) (2004), 253–363. (2004) MR2056430DOI10.1016/j.na.2004.02.012
  10. Švec, M., Sur le compontement asymptotique des intégrales de l’equation différetielle y ( 4 ) + Q ( x ) y = 0 , Czechoslovak Math. J. 8 (83) (1958), 230–245. (1958) MR0101355
  11. Swanson, C.A., Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968. (1968) Zbl0191.09904MR0463570
  12. Tanigawa, T., 10.32917/hmj/1150997976, Hiroshima Math. J. 33 (2003), 297–316. (2003) MR2040899DOI10.32917/hmj/1150997976
  13. Tanigawa, T., Oscillation criteria for a class of higher order nonlinear differential equations, Mem. Differential Equations Math. Phys. 37 (2006), 137–152. (2006) MR2223229
  14. Wu, F., Nonoscillatory solutions of fourth order quasilinear differential equations, Funkcial. Ekvac. 45 (1) (2002), 71–88. (2002) MR1913681
  15. Wu, F., 10.1016/j.jmaa.2011.11.061, J. Math. Anal. Appl. 389 (2012), 632–646. (2012) Zbl1244.34054MR2876527DOI10.1016/j.jmaa.2011.11.061

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.