The -nilpotency of finite groups with some weakly pronormal subgroups
Jianjun Liu; Jian Chang; Guiyun Chen
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 805-816
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Jianjun, Chang, Jian, and Chen, Guiyun. "The $p$-nilpotency of finite groups with some weakly pronormal subgroups." Czechoslovak Mathematical Journal 70.3 (2020): 805-816. <http://eudml.org/doc/297011>.
@article{Liu2020,
abstract = {For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G^\{\prime \}$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G^\{\prime \}$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô’s Lemma. We are motivated to generalize Ballester-Bolinches and Guo’s Theorem and Asaad’s Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^\{\mathfrak \{N_p\}\}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^\{\mathfrak \{N_p\}\}$ is the $p$-nilpotent residual of $G$.},
author = {Liu, Jianjun, Chang, Jian, Chen, Guiyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {weakly pronormal subgroup; normalizer; minimal subgroup; formation; $p$-nilpotency},
language = {eng},
number = {3},
pages = {805-816},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $p$-nilpotency of finite groups with some weakly pronormal subgroups},
url = {http://eudml.org/doc/297011},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Liu, Jianjun
AU - Chang, Jian
AU - Chen, Guiyun
TI - The $p$-nilpotency of finite groups with some weakly pronormal subgroups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 805
EP - 816
AB - For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G^{\prime }$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G^{\prime }$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô’s Lemma. We are motivated to generalize Ballester-Bolinches and Guo’s Theorem and Asaad’s Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^{\mathfrak {N_p}}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^{\mathfrak {N_p}}$ is the $p$-nilpotent residual of $G$.
LA - eng
KW - weakly pronormal subgroup; normalizer; minimal subgroup; formation; $p$-nilpotency
UR - http://eudml.org/doc/297011
ER -
References
top- Asaad, M., 10.1515/jgt-2013-0045, J. Group Theory 17 (2014), 407-418. (2014) Zbl1296.20016MR3200366DOI10.1515/jgt-2013-0045
- Asaad, M., Ballester-Bolinches, A., Aguilera, M. C. Pedraza, 10.1080/00927879608542654, Commun. Algebra 24 (1996), 2771-2776. (1996) Zbl0856.20015MR1393283DOI10.1080/00927879608542654
- Asaad, M., Ramadan, M., 10.1007/BF01198715, Arch. Math. 61 (1993), 206-214. (1993) Zbl0787.20013MR1231153DOI10.1007/BF01198715
- Ballester-Bolinches, A., 10.1007/BF02764949, Isr. J. Math. 67 (1989), 312-326. (1989) Zbl0689.20036MR1029905DOI10.1007/BF02764949
- Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F., 10.1017/S0017089514000159, Glasg. Math. J. 56 (2014), 691-703. (2014) Zbl1322.20011MR3250272DOI10.1017/S0017089514000159
- Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F., 10.1515/jgth-2015-0035, J. Group Theory 19 (2016), 323-329. (2016) Zbl1344.20027MR3466598DOI10.1515/jgth-2015-0035
- Ballester-Bolinches, A., Guo, X., 10.1006/jabr.1999.8274, J. Algebra 228 (2000), 491-496. (2000) Zbl0961.20016MR1764575DOI10.1006/jabr.1999.8274
- Ballester-Bolinches, A., Guo, X., Li, Y., Su, N., 10.1007/s00605-015-0803-y, Monatsh. Math. 181 (2016), 63-70. (2016) Zbl1369.20017MR3535904DOI10.1007/s00605-015-0803-y
- Brewster, B., Martínez-Pastor, A., Pérez-Ramos, M. D., 10.1016/j.jalgebra.2008.12.006, J. Algebra 321 (2009), 1734-1745. (2009) Zbl1200.20015MR2498266DOI10.1016/j.jalgebra.2008.12.006
- Doerk, K., Hawkes, T., 10.1515/9783110870138, De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099DOI10.1515/9783110870138
- Dornhoff, L., 10.1007/BF01109806, Math. Z. 100 (1967), 226-256. (1967) Zbl0157.35503MR0217174DOI10.1007/BF01109806
- Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics, Harper {&} Row Publishers, New York (1968). (1968) Zbl0185.05701MR0231903
- Guo, X. Y., Shum, K. P., 10.1016/S0022-4049(01)00062-7, J. Pure Appl. Algebra 169 (2002), 43-50. (2002) Zbl0997.20023MR1890184DOI10.1016/S0022-4049(01)00062-7
- Guo, X., Shum, K. P., 10.1360/03ys9019, Sci. China, Ser. A 46 (2003), 176-186. (2003) Zbl1217.20010MR1978505DOI10.1360/03ys9019
- Guo, X., Shum, K. P., 10.1007/BF02807195, Isr. J. Math. 136 (2003), 145-155. (2003) Zbl1048.20005MR1998107DOI10.1007/BF02807195
- Guo, X., Shum, K. P., 10.1016/j.jalgebra.2003.05.004, J. Algebra 270 (2003), 459-470. (2003) Zbl1072.20020MR2019627DOI10.1016/j.jalgebra.2003.05.004
- Itô, N., 10.1017/S0027763000023369, Nagoya Math. J. 9 (1955), 123-127 German. (1955) Zbl0066.01401MR0074410DOI10.1017/S0027763000023369
- Li, Y., Su, N., Wang, Y., 10.1515/jgth-2016-0028, J. Group Theory 20 (2017), 185-192. (2017) Zbl1368.20014MR3592611DOI10.1515/jgth-2016-0028
- Malinowska, I. A., 10.1007/s10474-015-0531-8, Acta Math. Hung. 147 (2015), 324-337. (2015) Zbl1363.20011MR3420580DOI10.1007/s10474-015-0531-8
- Navarro, G., 10.1090/S0002-9939-2014-12050-8, Proc. Am. Math. Soc. 142 (2014), 3003-3005. (2014) Zbl1309.20006MR3223355DOI10.1090/S0002-9939-2014-12050-8
- Peng, T. A., 10.1090/S0002-9939-1969-0232850-1, Proc. Am. Math. Soc. 20 (1969), 232-234. (1969) Zbl0167.02302MR0232850DOI10.1090/S0002-9939-1969-0232850-1
- Robinson, D. J. S., 10.1007/978-1-4419-8594-1, Graduate Texts in Mathematics 80, Springer, New York (1982). (1982) Zbl0483.20001MR0648604DOI10.1007/978-1-4419-8594-1
- Shi, J., Shi, W., Zhang, C., 10.1016/j.jalgebra.2008.12.004, J. Algebra 321 (2009), 1555-1560. (2009) Zbl1169.20012MR2494409DOI10.1016/j.jalgebra.2008.12.004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.