The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun Liu; Jian Chang; Guiyun Chen

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 805-816
  • ISSN: 0011-4642

Abstract

top
For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with order 4 is also weakly pronormal in G . These results generalized famous Itô’s Lemma. We are motivated to generalize Ballester-Bolinches and Guo’s Theorem and Asaad’s Theorem. It is proved that if p is the smallest prime dividing the order of a group G and P , a Sylow p -subgroup of G , then G is p -nilpotent if G is S 4 -free and every subgroup of order p in P P x G 𝔑 𝔭 is weakly pronormal in N G ( P ) for all x G N G ( P ) , and when p = 2 , P is quaternion-free, where G 𝔑 𝔭 is the p -nilpotent residual of G .

How to cite

top

Liu, Jianjun, Chang, Jian, and Chen, Guiyun. "The $p$-nilpotency of finite groups with some weakly pronormal subgroups." Czechoslovak Mathematical Journal 70.3 (2020): 805-816. <http://eudml.org/doc/297011>.

@article{Liu2020,
abstract = {For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G^\{\prime \}$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G^\{\prime \}$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô’s Lemma. We are motivated to generalize Ballester-Bolinches and Guo’s Theorem and Asaad’s Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^\{\mathfrak \{N_p\}\}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^\{\mathfrak \{N_p\}\}$ is the $p$-nilpotent residual of $G$.},
author = {Liu, Jianjun, Chang, Jian, Chen, Guiyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {weakly pronormal subgroup; normalizer; minimal subgroup; formation; $p$-nilpotency},
language = {eng},
number = {3},
pages = {805-816},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $p$-nilpotency of finite groups with some weakly pronormal subgroups},
url = {http://eudml.org/doc/297011},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Liu, Jianjun
AU - Chang, Jian
AU - Chen, Guiyun
TI - The $p$-nilpotency of finite groups with some weakly pronormal subgroups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 805
EP - 816
AB - For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G^{\prime }$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G^{\prime }$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô’s Lemma. We are motivated to generalize Ballester-Bolinches and Guo’s Theorem and Asaad’s Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^{\mathfrak {N_p}}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^{\mathfrak {N_p}}$ is the $p$-nilpotent residual of $G$.
LA - eng
KW - weakly pronormal subgroup; normalizer; minimal subgroup; formation; $p$-nilpotency
UR - http://eudml.org/doc/297011
ER -

References

top
  1. Asaad, M., 10.1515/jgt-2013-0045, J. Group Theory 17 (2014), 407-418. (2014) Zbl1296.20016MR3200366DOI10.1515/jgt-2013-0045
  2. Asaad, M., Ballester-Bolinches, A., Aguilera, M. C. Pedraza, 10.1080/00927879608542654, Commun. Algebra 24 (1996), 2771-2776. (1996) Zbl0856.20015MR1393283DOI10.1080/00927879608542654
  3. Asaad, M., Ramadan, M., 10.1007/BF01198715, Arch. Math. 61 (1993), 206-214. (1993) Zbl0787.20013MR1231153DOI10.1007/BF01198715
  4. Ballester-Bolinches, A., 10.1007/BF02764949, Isr. J. Math. 67 (1989), 312-326. (1989) Zbl0689.20036MR1029905DOI10.1007/BF02764949
  5. Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F., 10.1017/S0017089514000159, Glasg. Math. J. 56 (2014), 691-703. (2014) Zbl1322.20011MR3250272DOI10.1017/S0017089514000159
  6. Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F., 10.1515/jgth-2015-0035, J. Group Theory 19 (2016), 323-329. (2016) Zbl1344.20027MR3466598DOI10.1515/jgth-2015-0035
  7. Ballester-Bolinches, A., Guo, X., 10.1006/jabr.1999.8274, J. Algebra 228 (2000), 491-496. (2000) Zbl0961.20016MR1764575DOI10.1006/jabr.1999.8274
  8. Ballester-Bolinches, A., Guo, X., Li, Y., Su, N., 10.1007/s00605-015-0803-y, Monatsh. Math. 181 (2016), 63-70. (2016) Zbl1369.20017MR3535904DOI10.1007/s00605-015-0803-y
  9. Brewster, B., Martínez-Pastor, A., Pérez-Ramos, M. D., 10.1016/j.jalgebra.2008.12.006, J. Algebra 321 (2009), 1734-1745. (2009) Zbl1200.20015MR2498266DOI10.1016/j.jalgebra.2008.12.006
  10. Doerk, K., Hawkes, T., 10.1515/9783110870138, De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099DOI10.1515/9783110870138
  11. Dornhoff, L., 10.1007/BF01109806, Math. Z. 100 (1967), 226-256. (1967) Zbl0157.35503MR0217174DOI10.1007/BF01109806
  12. Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics, Harper {&} Row Publishers, New York (1968). (1968) Zbl0185.05701MR0231903
  13. Guo, X. Y., Shum, K. P., 10.1016/S0022-4049(01)00062-7, J. Pure Appl. Algebra 169 (2002), 43-50. (2002) Zbl0997.20023MR1890184DOI10.1016/S0022-4049(01)00062-7
  14. Guo, X., Shum, K. P., 10.1360/03ys9019, Sci. China, Ser. A 46 (2003), 176-186. (2003) Zbl1217.20010MR1978505DOI10.1360/03ys9019
  15. Guo, X., Shum, K. P., 10.1007/BF02807195, Isr. J. Math. 136 (2003), 145-155. (2003) Zbl1048.20005MR1998107DOI10.1007/BF02807195
  16. Guo, X., Shum, K. P., 10.1016/j.jalgebra.2003.05.004, J. Algebra 270 (2003), 459-470. (2003) Zbl1072.20020MR2019627DOI10.1016/j.jalgebra.2003.05.004
  17. Itô, N., 10.1017/S0027763000023369, Nagoya Math. J. 9 (1955), 123-127 German. (1955) Zbl0066.01401MR0074410DOI10.1017/S0027763000023369
  18. Li, Y., Su, N., Wang, Y., 10.1515/jgth-2016-0028, J. Group Theory 20 (2017), 185-192. (2017) Zbl1368.20014MR3592611DOI10.1515/jgth-2016-0028
  19. Malinowska, I. A., 10.1007/s10474-015-0531-8, Acta Math. Hung. 147 (2015), 324-337. (2015) Zbl1363.20011MR3420580DOI10.1007/s10474-015-0531-8
  20. Navarro, G., 10.1090/S0002-9939-2014-12050-8, Proc. Am. Math. Soc. 142 (2014), 3003-3005. (2014) Zbl1309.20006MR3223355DOI10.1090/S0002-9939-2014-12050-8
  21. Peng, T. A., 10.1090/S0002-9939-1969-0232850-1, Proc. Am. Math. Soc. 20 (1969), 232-234. (1969) Zbl0167.02302MR0232850DOI10.1090/S0002-9939-1969-0232850-1
  22. Robinson, D. J. S., 10.1007/978-1-4419-8594-1, Graduate Texts in Mathematics 80, Springer, New York (1982). (1982) Zbl0483.20001MR0648604DOI10.1007/978-1-4419-8594-1
  23. Shi, J., Shi, W., Zhang, C., 10.1016/j.jalgebra.2008.12.004, J. Algebra 321 (2009), 1555-1560. (2009) Zbl1169.20012MR2494409DOI10.1016/j.jalgebra.2008.12.004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.