A note on representing dowling geometries by partitions

František Matúš; Aner Ben-Efraim

Kybernetika (2020)

  • Volume: 56, Issue: 5, page 934-947
  • ISSN: 0023-5954

Abstract

top
We prove that a rank 3 Dowling geometry of a group H is partition representable if and only if H is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.

How to cite

top

Matúš, František, and Ben-Efraim, Aner. "A note on representing dowling geometries by partitions." Kybernetika 56.5 (2020): 934-947. <http://eudml.org/doc/297015>.

@article{Matúš2020,
abstract = {We prove that a rank $\ge 3$ Dowling geometry of a group $H$ is partition representable if and only if $H$ is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.},
author = {Matúš, František, Ben-Efraim, Aner},
journal = {Kybernetika},
keywords = {matroid representations; partition representations; Dowling geometries; Frobenius groups},
language = {eng},
number = {5},
pages = {934-947},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A note on representing dowling geometries by partitions},
url = {http://eudml.org/doc/297015},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Matúš, František
AU - Ben-Efraim, Aner
TI - A note on representing dowling geometries by partitions
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 5
SP - 934
EP - 947
AB - We prove that a rank $\ge 3$ Dowling geometry of a group $H$ is partition representable if and only if $H$ is a Frobenius complement. This implies that Dowling group geometries are secret-sharing if and only if they are multilinearly representable.
LA - eng
KW - matroid representations; partition representations; Dowling geometries; Frobenius groups
UR - http://eudml.org/doc/297015
ER -

References

top
  1. Beimel, A., Ben-Efraim, A., Padró, C., Tyomkin, I., 10.1007/978-3-642-54242-8_17, Theory Cryptogr. Conf. 14 (2014), 394-418. MR3183548DOI10.1007/978-3-642-54242-8_17
  2. Ben-Efraim, A., 10.1016/j.disc.2016.02.012, Discrete Math. 339 (2015), 8, 2136-2145. MR3500143DOI10.1016/j.disc.2016.02.012
  3. Brickell, E. F., Davenport, D. M., On the classification of ideal secret sharing schemes. 
  4. Brown, R., 10.1090/memo/0717, Memoirs Amer. Math. Soc. 151 (2001), 717. MR1828640DOI10.1090/memo/0717
  5. Dowling, T. A., 10.1016/s0095-8956(73)80007-3, J. Combinat. Theory, Ser. B 14 (1973), 61-86. MR0307951DOI10.1016/s0095-8956(73)80007-3
  6. Evans, D. M., Hrushovski, E., 10.1112/plms/s3-62.1.1, Proc. London Math. Soc. 62 (1989), 3, 1-24. MR1078211DOI10.1112/plms/s3-62.1.1
  7. Feit, W., Characters of Finite Groups., W. A. Benjamin Company, Inc., New York 1967. MR0219636
  8. Matúš, F., 10.1016/s0012-365x(99)00004-7, Discrete Math. 203 (1999), 169-194. MR1696241DOI10.1016/s0012-365x(99)00004-7
  9. Jacobson, N., Basic Algebra II. (Second Edition), W. H. Freeman and Co., New York 1989. MR1009787
  10. Oxley, J. G., 10.1093/acprof:oso/9780198566946.001.0001, Oxford University Press Inc., New York 2011. MR2849819DOI10.1093/acprof:oso/9780198566946.001.0001
  11. Passman, D. S., Permutation Groups., Dover Publications, Inc. Mineola, New York 2012. MR2963408
  12. Pendavingh, R. A., Zwam, S. H. M. van, 10.1016/j.aam.2011.08.003, Adv. Appl. Math. 50 (2013), 1, 201-227. MR2996392DOI10.1016/j.aam.2011.08.003
  13. Seymour, P. D., 10.1016/0095-8956(92)90007-k, J. Combinat. Theory, Ser. B 56 (1992), 69-73. MR1182458DOI10.1016/0095-8956(92)90007-k
  14. Simonis, J., Ashikhmin, A., 10.1023/a:1008244215660, Designs Codes Cryptogr. 14 (1998), 2, 179-197. MR1614357DOI10.1023/a:1008244215660
  15. Suzuki, M., Group Theory I., Springer-Verlag, Berlin 1982. MR0648772
  16. Vertigan, D., 10.1007/s00026-015-0250-4, Ann. Combinat. 19 (2015), 225-233. MR3319870DOI10.1007/s00026-015-0250-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.