Several Remarks on Fractional Calculus
Jan Čermák; Tomáš Kisela; Luděk Nechvátal
Pokroky matematiky, fyziky a astronomie (2020)
- Volume: 65, Issue: 3, page 157-174
- ISSN: 0032-2423
Access Full Article
topAbstract
topHow to cite
topReferences
top- Cong, N. D., Doan, T. S., Siegmund, S., Tuan, H. T., 10.14232/ejqtde.2016.1.39, . Electron. J. Qual. Theory Differ. Equ. 39 (2016), 1–13. (2016) MR3513975DOI10.14232/ejqtde.2016.1.39
- Čermák, J., Nechvátal, L., 10.1007/s11071-016-3090-9, . Nonlinear Dynam. 87 (2017), 939–954. (2017) MR3594447DOI10.1007/s11071-016-3090-9
- Diethelm, K., The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, . Springer, Berlin, 2010. (2010) MR2680847
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and applications of fractional differential equations, . North-Holland Mathematics Studies 204. Elsevier, Amsterdam, 2006. (2006) MR2218073
- Kuczma, M., Choczewski, B., Ger, R., Iterative functional equations, . Cambridge University Press, 1990. (1990) MR1067720
- Matignon, D., Stability results for fractional differential equations with applications to control processing, . Comput. Engrg. Systems Appl. (Lille) (1996), 963–968. (1996)
- Oldham, K., Spanier, J., The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, . Math. Sci. Eng. 111, Academic Press, New York–London, 1974. (1974) MR0361633
- Podlubný, I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, . Math. Sci. Eng. 198, Academic Press, San Diego, 1998. (1998) MR1658022
- Veselý, J., Poznámky k historii funkce gama, . In: Bečvář, J., Fuchs, E. (eds.): Člověk – umění – matematika. Sborník přednášek z letních škol Historie matematiky, Dějiny matematiky 4. Prometheus, Praha, 1996, 49–71. (1996) MR1915568