Roughness in -graphs
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 2, page 147-154
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topOnagh, Bibi N.. "Roughness in $G$-graphs." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 147-154. <http://eudml.org/doc/297021>.
@article{Onagh2020,
abstract = {$G$-graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding $G$-graphs. Then we introduce the notion of rough $G$-graphs and investigate some important properties of these graphs.},
author = {Onagh, Bibi N.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {coset; $G$-graph; rough set; group; normal subgroup; lower approximation; upper approximation},
language = {eng},
number = {2},
pages = {147-154},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Roughness in $G$-graphs},
url = {http://eudml.org/doc/297021},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Onagh, Bibi N.
TI - Roughness in $G$-graphs
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 147
EP - 154
AB - $G$-graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding $G$-graphs. Then we introduce the notion of rough $G$-graphs and investigate some important properties of these graphs.
LA - eng
KW - coset; $G$-graph; rough set; group; normal subgroup; lower approximation; upper approximation
UR - http://eudml.org/doc/297021
ER -
References
top- Badaoui M., Bretto A., Ellison D., Mourad B., 10.26493/1855-3974.1537.97c, Ars Math. Contemp. 15 (2018), no. 2, 425–440. MR3880000DOI10.26493/1855-3974.1537.97c
- Bretto A., Faisant A., Another way for associating a graph to a group, Math. Slovaca 55 (2005), no. 1, 1–8. MR2178531
- Bretto A., Faisant A., 10.1016/j.jsc.2011.08.016, J. Symbolic Comput. 46 (2011), no. 12, 1403–1412. MR2861005DOI10.1016/j.jsc.2011.08.016
- Bretto A., Faisant A., Gillibert L., 10.1016/j.jsc.2006.08.002, J. Symbolic Comput. 42 (2007), no. 5, 549–560. MR2322473DOI10.1016/j.jsc.2006.08.002
- Bretto A., Gilibert L., -graphs for the cage problem: a new upper bound, International Symp. on Symbolic and Algebraic Computation, ISSAC 2007, ACM, New York, 2007, pages 49–53. MR2396183
- Bretto A., Gillibert L., 10.1016/j.dam.2007.11.011, Discrete Appl. Math. 156 (2008), no. 14, 2719–2739. MR2451092DOI10.1016/j.dam.2007.11.011
- Bretto A., Jaulin C., Gillibert L., Laget B., A new property of Hamming graphs and mesh of -ary trees, 8th Asian Symposium, ASCM 2007, Singapore, 2007, Lecture Notes in Artificial Intelligence, Subseries Lecture Notes in Computer Science 5081, 2008, pages 139–150.
- Cayley A., 10.2307/2369306, Amer. J. Math. 1 (1878), no. 2, 174–176. MR1505159DOI10.2307/2369306
- Cayley A., 10.2307/2369415, Amer. J. Math. 11 (1889), no. 2, 139–157. MR1505501DOI10.2307/2369415
- Cheng W., Mo Z.-W., Wang J., 10.1016/j.ins.2006.12.006, Inform. Sci. 177 (2007), no. 22, 5134–5140. MR2362816DOI10.1016/j.ins.2006.12.006
- Kuroki N., Wang P. P., 10.1016/0020-0255(95)00282-0, Inform. Sci. 90 (1996), no. 1–4, 203–220. MR1388421DOI10.1016/0020-0255(95)00282-0
- Pawlak Z., 10.1007/BF01001956, Internat. J. Comput. Inform. Sci. 11 (1982), no. 5, 341–356. MR0703291DOI10.1007/BF01001956
- Shahzamanian M. H., Shirmohammadi M., Davvaz B., 10.1016/j.ins.2010.05.011, Inform. Sci. 180 (2010), no. 17, 3362–3372. MR2659052DOI10.1016/j.ins.2010.05.011
- West D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996. Zbl1121.05304MR1367739
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.