Automorphic loops and metabelian groups
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 4, page 523-534
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGreer, Mark, and Raney, Lee. "Automorphic loops and metabelian groups." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 523-534. <http://eudml.org/doc/297022>.
@article{Greer2020,
abstract = {Given a uniquely 2-divisible group $G$, we study a commutative loop $(G,\circ )$ which arises as a result of a construction in “Engelsche elemente noetherscher gruppen” (1957) by R. Baer. We investigate some general properties and applications of “$\circ $” and determine a necessary and sufficient condition on $G$ in order for $(G, \circ )$ to be Moufang. In “A class of loops categorically isomorphic to Bruck loops of odd order” (2014) by M. Greer, it is conjectured that $G$ is metabelian if and only if $(G, \circ )$ is an automorphic loop. We answer a portion of this conjecture in the affirmative: in particular, we show that if $G$ is a split metabelian group of odd order, then $(G, \circ )$ is automorphic.},
author = {Greer, Mark, Raney, Lee},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {metabelian groups; automorphic loops; Bruck loops; Moufang loops},
language = {eng},
number = {4},
pages = {523-534},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Automorphic loops and metabelian groups},
url = {http://eudml.org/doc/297022},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Greer, Mark
AU - Raney, Lee
TI - Automorphic loops and metabelian groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 523
EP - 534
AB - Given a uniquely 2-divisible group $G$, we study a commutative loop $(G,\circ )$ which arises as a result of a construction in “Engelsche elemente noetherscher gruppen” (1957) by R. Baer. We investigate some general properties and applications of “$\circ $” and determine a necessary and sufficient condition on $G$ in order for $(G, \circ )$ to be Moufang. In “A class of loops categorically isomorphic to Bruck loops of odd order” (2014) by M. Greer, it is conjectured that $G$ is metabelian if and only if $(G, \circ )$ is an automorphic loop. We answer a portion of this conjecture in the affirmative: in particular, we show that if $G$ is a split metabelian group of odd order, then $(G, \circ )$ is automorphic.
LA - eng
KW - metabelian groups; automorphic loops; Bruck loops; Moufang loops
UR - http://eudml.org/doc/297022
ER -
References
top- Baer R., 10.1007/BF02547953, Math. Ann. 133 (1957), 256–270 (German). MR0086815DOI10.1007/BF02547953
- Bender H., 10.1007/BF01899467, Arch. Math. (Basel) 18 (1967), 15–16 (German). MR0213439DOI10.1007/BF01899467
- Bruck R. H., A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie, Springer, Berlin, 1958. Zbl0141.01401MR0093552
- HASH(0x23f7c08), GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, https://www.gap-system.org, 2008.
- Glauberman G., 10.1016/0021-8693(64)90017-1, J. Algebra 1 (1964), 374–396. Zbl0155.03901MR0175991DOI10.1016/0021-8693(64)90017-1
- Greer M., A class of loops categorically isomorphic to Bruck loops of odd order, Comm. Algebra 42 (2014), no. 8, 3682–3697. MR3196069
- Isaacs I. M., 10.1090/gsm/092, Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, 2008. MR2426855DOI10.1090/gsm/092
- Jedlička P., Kinyon M., Vojtěchovský P., 10.1090/S0002-9947-2010-05088-3, Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. Zbl1215.20060MR2719686DOI10.1090/S0002-9947-2010-05088-3
- Kinyon M. K., Nagy G. P., Vojtěchovský P., 10.1016/j.jalgebra.2016.11.023, J. Algebra 473 (2017), 481–512. MR3591160DOI10.1016/j.jalgebra.2016.11.023
- Kinyon M. K., Vojtěchovský P., 10.1080/00927870802278917, Comm. Algebra 37 (2009), no. 4, 1428–1444. MR2510992DOI10.1080/00927870802278917
- McCune W. W., Prover9, Mace4, https://www.cs.unm.edu/̴ mccune/prover9/ , 2009.
- Nagy G. P., Vojtěchovský P., Computing with small quasigroups and loops, Quasigroups Related Systems 15 (2007), no. 1, 77–94. MR2379126
- Stuhl I., Vojtěchovský P., 10.1090/conm/721/14510, Nonassociative Mathematics and Its Applications, Contemp. Math., 721, Amer. Math. Soc., Providence, 2019, pages 261–276. MR3898514DOI10.1090/conm/721/14510
- Pflugfelder H. O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990. Zbl0715.20043MR1125767
- Thompson J. G., 10.1007/BF01111272, Math. Z. 86 (1964), 12–13. MR0168653DOI10.1007/BF01111272
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.