On congruence permutable -sets
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 2, page 139-145
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNagy, Attila. "On congruence permutable $G$-sets." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 139-145. <http://eudml.org/doc/297023>.
@article{Nagy2020,
abstract = {An algebraic structure is said to be congruence permutable if its arbitrary congruences $\alpha $ and $\beta $ satisfy the equation $\alpha \circ \beta =\beta \circ \alpha $, where $\circ $ denotes the usual composition of binary relations. To an arbitrary $G$-set $X$ satisfying $G\cap X=\emptyset $, we assign a semigroup $(G,X,0)$ on the base set $G\cup X\cup \lbrace 0\rbrace $ containing a zero element $0\notin G\cup X$, and examine the connection between the congruence permutability of the $G$-set $X$ and the semigroup $(G,X,0)$.},
author = {Nagy, Attila},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$G$-set; congruence permutable algebras; semigroup},
language = {eng},
number = {2},
pages = {139-145},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On congruence permutable $G$-sets},
url = {http://eudml.org/doc/297023},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Nagy, Attila
TI - On congruence permutable $G$-sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 139
EP - 145
AB - An algebraic structure is said to be congruence permutable if its arbitrary congruences $\alpha $ and $\beta $ satisfy the equation $\alpha \circ \beta =\beta \circ \alpha $, where $\circ $ denotes the usual composition of binary relations. To an arbitrary $G$-set $X$ satisfying $G\cap X=\emptyset $, we assign a semigroup $(G,X,0)$ on the base set $G\cup X\cup \lbrace 0\rbrace $ containing a zero element $0\notin G\cup X$, and examine the connection between the congruence permutability of the $G$-set $X$ and the semigroup $(G,X,0)$.
LA - eng
KW - $G$-set; congruence permutable algebras; semigroup
UR - http://eudml.org/doc/297023
ER -
References
top- Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, 1961. MR0132791
- Deák A., Nagy A., Finite permutable Putcha semigroups, Acta Sci. Math. (Szeged) 76 (2010), no. 3–4, 397–410. MR2789677
- Hamilton H., 10.1007/BF02194872, Semigroup Forum 10 (1975/76), no. 1, 55–66. MR0387455DOI10.1007/BF02194872
- McKenzien R. N., McNulty G. F., Taylor W. F., Algebras, Lattices, Varieties, Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987. MR0883644
- Nagy A., Special Classes of Semigroups, Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR1777265
- Pálfy P. P., Pudlák P., 10.1007/BF02483080, Algebra Universalis 11 (1980), no. 1, 22–27. MR0593011DOI10.1007/BF02483080
- Pálfy P. P., Saxl J., 10.1080/00927879008824052, Comm. Algebra 18 (1990), no. 9, 2783–2790. MR1063342DOI10.1080/00927879008824052
- Vernikov B. M., On congruences of -sets, Comment. Math. Univ. Carolin. 38 (1997), no. 3, 601–611. MR1485081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.