Stability of unique pseudo almost periodic solutions with measure
Boulbaba Ghanmi; Mohsen Miraoui
Applications of Mathematics (2020)
- Volume: 65, Issue: 4, page 421-445
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGhanmi, Boulbaba, and Miraoui, Mohsen. "Stability of unique pseudo almost periodic solutions with measure." Applications of Mathematics 65.4 (2020): 421-445. <http://eudml.org/doc/297028>.
@article{Ghanmi2020,
abstract = {By means of the fixed-point methods and the properties of the $\mu $-pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the $\mu $-pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where $\mu $ is a positive measure. A numerical example is given to illustrate our main results.},
author = {Ghanmi, Boulbaba, Miraoui, Mohsen},
journal = {Applications of Mathematics},
keywords = {measure pseudo almost periodic solution; recurrent neural networks; mixed delays},
language = {eng},
number = {4},
pages = {421-445},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability of unique pseudo almost periodic solutions with measure},
url = {http://eudml.org/doc/297028},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Ghanmi, Boulbaba
AU - Miraoui, Mohsen
TI - Stability of unique pseudo almost periodic solutions with measure
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 421
EP - 445
AB - By means of the fixed-point methods and the properties of the $\mu $-pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the $\mu $-pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where $\mu $ is a positive measure. A numerical example is given to illustrate our main results.
LA - eng
KW - measure pseudo almost periodic solution; recurrent neural networks; mixed delays
UR - http://eudml.org/doc/297028
ER -
References
top- Abbas, S., Mahto, L., Hafayed, M., Alimi, A. M., 10.1016/j.neucom.2014.04.028, Neurocomputing 142 (2014), 326-334. (2014) DOI10.1016/j.neucom.2014.04.028
- Ammar, B., Chérif, F., Alimi, A. M., 10.1109/tnnls.2011.2178444, IEEE Trans. Neural Netw. Learn Syst. 23 (2012), 109-118. (2012) MR3453740DOI10.1109/tnnls.2011.2178444
- Bai, C., 10.1016/j.na.2009.05.008, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 5850-5859. (2009) Zbl1183.34113MR2547154DOI10.1016/j.na.2009.05.008
- Blot, J., Cieutat, P., Ezzinbi, K., 10.1080/00036811.2011.628941, Appl. Anal. 92 (2013), 493-526. (2013) Zbl1266.43004MR3021274DOI10.1080/00036811.2011.628941
- Cao, J., Liang, J., Lam, J., 10.1016/j.physd.2004.09.012, Physica D 199 (2004), 425-436. (2004) Zbl1071.93048MR2106322DOI10.1016/j.physd.2004.09.012
- Chérif, F., 10.1007/s12591-013-0168-4, Differ. Equ. Dyn. Syst. 22 (2014), 191-207. (2014) Zbl1298.34135MR3183104DOI10.1007/s12591-013-0168-4
- Chérif, F., Miraoui, M., 10.1142/S1793524519500190, Int. J. Biomath. 12 (2019), Article ID 1950019, 20 pages. (2019) Zbl1409.35114MR3923070DOI10.1142/S1793524519500190
- Chua, L. O., Yang, L., 10.1109/31.7600, IEEE Trans. Circuits Syst. 35 (1988), 1257-1272. (1988) Zbl0663.94022MR0960777DOI10.1109/31.7600
- Chua, L. O., Yang, L., 10.1109/31.7601, IEEE Trans. Circuits Syst. 35 (1988), 1273-1290. (1988) MR0960778DOI10.1109/31.7601
- Corduneanu, C., Georghiu, N., Barbu, V., Almost Periodic Functions, Interscience Tracts in Pure and Applied Mathematics 22, Interscience Publishers, New York (1968). (1968) Zbl0175.09101MR0481915
- Diagana, T., 10.1016/j.na.2007.01.054, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 2250-2260. (2008) Zbl1131.42006MR2398647DOI10.1016/j.na.2007.01.054
- Diagana, T., Ezzinbi, K., Miraoui, M., 10.4067/S0719-06462014000200001, Cubo 16 (2014), 1-31. (2014) Zbl1326.34075MR3237503DOI10.4067/S0719-06462014000200001
- Duan, L., 10.1007/s11424-017-6180-y, J. Syst. Sci. Complex. 31 (2018), 608-620. (2018) Zbl1401.93175MR3782657DOI10.1007/s11424-017-6180-y
- Fréchet, M., Sur le théorème ergodique de Birkhoff, C. R. Acad. Sci., Paris 213 (1941), French 607-609. (1941) Zbl0027.07704MR0009704
- Huang, H., Cao, J., Wang, J., 10.1016/S0375-9601(02)00537-6, Phys. Lett., A 298 (2002), 393-404. (2002) Zbl0995.92007MR1915308DOI10.1016/S0375-9601(02)00537-6
- Li, Y., Meng, X., Xiong, L., 10.1007/s13042-016-0570-7, Int. J. Mach. Learn. Cyb. 8 (2017), 1915-1927. (2017) DOI10.1007/s13042-016-0570-7
- Meng, X., Li, Y., 10.1186/s13660-018-1837-1, J. Inequal. Appl. 2018 (2018), Article ID 245, 17 pages. (2018) MR3856277DOI10.1186/s13660-018-1837-1
- M'hamdi, M. S., Aouiti, C., Touati, A., Alimi, A. M., Snasel, V., 10.1016/S0252-9602(16)30098-4, Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 1662-1682. (2016) Zbl1374.34275MR3548316DOI10.1016/S0252-9602(16)30098-4
- Miraoui, M., 10.1002/mma.4339, Math. Methods Appl. Sci. 40 (2017), 4716-4726. (2017) Zbl1377.34078MR3683339DOI10.1002/mma.4339
- Miraoui, M., 10.1080/01630563.2017.1279175, Numer. Funct. Anal. Optim. 38 (2017), 376-394. (2017) Zbl1369.34093MR3619630DOI10.1080/01630563.2017.1279175
- Miraoui, M., Yaakoubi, N., 10.1080/01630563.2018.1561469, Numer. Funct. Anal. Optim. 40 (2019), 571-585. (2019) Zbl07060064MR3948375DOI10.1080/01630563.2018.1561469
- N'Guérékata, G. M., 10.1007/978-1-4757-4482-8, Kluwer Academic/Plenum Publishers, New York (2001). (2001) Zbl1001.43001MR1880351DOI10.1007/978-1-4757-4482-8
- Qiu, F., Cui, B., Wu, W., 10.1016/j.apm.2007.10.021, Appl. Math. Modelling 33 (2009), 198-210. (2009) Zbl1167.34384MR2458506DOI10.1016/j.apm.2007.10.021
- Roska, T., Chua, L. O., 10.1002/cta.4490200504, Int. J. Circuit Theory Appl. 20 (1992), 469-481. (1992) Zbl0775.92011DOI10.1002/cta.4490200504
- Xiang, H., Cao, J., 10.1016/j.na.2009.05.079, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 6097-6108. (2009) Zbl1196.34096MR2566514DOI10.1016/j.na.2009.05.079
- Yu, Y., Cai, M., 10.1016/j.mcm.2007.06.014, Math. Comput. Modelling 47 (2008), 943-951. (2008) Zbl1144.34370MR2413726DOI10.1016/j.mcm.2007.06.014
- Zhang, C., 10.1006/jmaa.1994.1005, J. Math. Anal. Appl. 181 (1994), 62-76. (1994) Zbl0796.34029MR1257954DOI10.1006/jmaa.1994.1005
- Zhang, C., 10.1006/jmaa.1995.1189, J. Math. Anal. Appl. 192 (1995), 543-561. (1995) Zbl0826.34040MR1332227DOI10.1006/jmaa.1995.1189
- Zhao, H., 10.1016/S0096-3003(03)00743-4, Appl. Math. Comput. 154 (2004), 683-695. (2004) Zbl1057.34099MR2072813DOI10.1016/S0096-3003(03)00743-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.