Stability of unique pseudo almost periodic solutions with measure

Boulbaba Ghanmi; Mohsen Miraoui

Applications of Mathematics (2020)

  • Volume: 65, Issue: 4, page 421-445
  • ISSN: 0862-7940

Abstract

top
By means of the fixed-point methods and the properties of the μ -pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the μ -pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where μ is a positive measure. A numerical example is given to illustrate our main results.

How to cite

top

Ghanmi, Boulbaba, and Miraoui, Mohsen. "Stability of unique pseudo almost periodic solutions with measure." Applications of Mathematics 65.4 (2020): 421-445. <http://eudml.org/doc/297028>.

@article{Ghanmi2020,
abstract = {By means of the fixed-point methods and the properties of the $\mu $-pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the $\mu $-pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where $\mu $ is a positive measure. A numerical example is given to illustrate our main results.},
author = {Ghanmi, Boulbaba, Miraoui, Mohsen},
journal = {Applications of Mathematics},
keywords = {measure pseudo almost periodic solution; recurrent neural networks; mixed delays},
language = {eng},
number = {4},
pages = {421-445},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability of unique pseudo almost periodic solutions with measure},
url = {http://eudml.org/doc/297028},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Ghanmi, Boulbaba
AU - Miraoui, Mohsen
TI - Stability of unique pseudo almost periodic solutions with measure
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 421
EP - 445
AB - By means of the fixed-point methods and the properties of the $\mu $-pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the $\mu $-pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where $\mu $ is a positive measure. A numerical example is given to illustrate our main results.
LA - eng
KW - measure pseudo almost periodic solution; recurrent neural networks; mixed delays
UR - http://eudml.org/doc/297028
ER -

References

top
  1. Abbas, S., Mahto, L., Hafayed, M., Alimi, A. M., 10.1016/j.neucom.2014.04.028, Neurocomputing 142 (2014), 326-334. (2014) DOI10.1016/j.neucom.2014.04.028
  2. Ammar, B., Chérif, F., Alimi, A. M., 10.1109/tnnls.2011.2178444, IEEE Trans. Neural Netw. Learn Syst. 23 (2012), 109-118. (2012) MR3453740DOI10.1109/tnnls.2011.2178444
  3. Bai, C., 10.1016/j.na.2009.05.008, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 5850-5859. (2009) Zbl1183.34113MR2547154DOI10.1016/j.na.2009.05.008
  4. Blot, J., Cieutat, P., Ezzinbi, K., 10.1080/00036811.2011.628941, Appl. Anal. 92 (2013), 493-526. (2013) Zbl1266.43004MR3021274DOI10.1080/00036811.2011.628941
  5. Cao, J., Liang, J., Lam, J., 10.1016/j.physd.2004.09.012, Physica D 199 (2004), 425-436. (2004) Zbl1071.93048MR2106322DOI10.1016/j.physd.2004.09.012
  6. Chérif, F., 10.1007/s12591-013-0168-4, Differ. Equ. Dyn. Syst. 22 (2014), 191-207. (2014) Zbl1298.34135MR3183104DOI10.1007/s12591-013-0168-4
  7. Chérif, F., Miraoui, M., 10.1142/S1793524519500190, Int. J. Biomath. 12 (2019), Article ID 1950019, 20 pages. (2019) Zbl1409.35114MR3923070DOI10.1142/S1793524519500190
  8. Chua, L. O., Yang, L., 10.1109/31.7600, IEEE Trans. Circuits Syst. 35 (1988), 1257-1272. (1988) Zbl0663.94022MR0960777DOI10.1109/31.7600
  9. Chua, L. O., Yang, L., 10.1109/31.7601, IEEE Trans. Circuits Syst. 35 (1988), 1273-1290. (1988) MR0960778DOI10.1109/31.7601
  10. Corduneanu, C., Georghiu, N., Barbu, V., Almost Periodic Functions, Interscience Tracts in Pure and Applied Mathematics 22, Interscience Publishers, New York (1968). (1968) Zbl0175.09101MR0481915
  11. Diagana, T., 10.1016/j.na.2007.01.054, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 2250-2260. (2008) Zbl1131.42006MR2398647DOI10.1016/j.na.2007.01.054
  12. Diagana, T., Ezzinbi, K., Miraoui, M., 10.4067/S0719-06462014000200001, Cubo 16 (2014), 1-31. (2014) Zbl1326.34075MR3237503DOI10.4067/S0719-06462014000200001
  13. Duan, L., 10.1007/s11424-017-6180-y, J. Syst. Sci. Complex. 31 (2018), 608-620. (2018) Zbl1401.93175MR3782657DOI10.1007/s11424-017-6180-y
  14. Fréchet, M., Sur le théorème ergodique de Birkhoff, C. R. Acad. Sci., Paris 213 (1941), French 607-609. (1941) Zbl0027.07704MR0009704
  15. Huang, H., Cao, J., Wang, J., 10.1016/S0375-9601(02)00537-6, Phys. Lett., A 298 (2002), 393-404. (2002) Zbl0995.92007MR1915308DOI10.1016/S0375-9601(02)00537-6
  16. Li, Y., Meng, X., Xiong, L., 10.1007/s13042-016-0570-7, Int. J. Mach. Learn. Cyb. 8 (2017), 1915-1927. (2017) DOI10.1007/s13042-016-0570-7
  17. Meng, X., Li, Y., 10.1186/s13660-018-1837-1, J. Inequal. Appl. 2018 (2018), Article ID 245, 17 pages. (2018) MR3856277DOI10.1186/s13660-018-1837-1
  18. M'hamdi, M. S., Aouiti, C., Touati, A., Alimi, A. M., Snasel, V., 10.1016/S0252-9602(16)30098-4, Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 1662-1682. (2016) Zbl1374.34275MR3548316DOI10.1016/S0252-9602(16)30098-4
  19. Miraoui, M., 10.1002/mma.4339, Math. Methods Appl. Sci. 40 (2017), 4716-4726. (2017) Zbl1377.34078MR3683339DOI10.1002/mma.4339
  20. Miraoui, M., 10.1080/01630563.2017.1279175, Numer. Funct. Anal. Optim. 38 (2017), 376-394. (2017) Zbl1369.34093MR3619630DOI10.1080/01630563.2017.1279175
  21. Miraoui, M., Yaakoubi, N., 10.1080/01630563.2018.1561469, Numer. Funct. Anal. Optim. 40 (2019), 571-585. (2019) Zbl07060064MR3948375DOI10.1080/01630563.2018.1561469
  22. N'Guérékata, G. M., 10.1007/978-1-4757-4482-8, Kluwer Academic/Plenum Publishers, New York (2001). (2001) Zbl1001.43001MR1880351DOI10.1007/978-1-4757-4482-8
  23. Qiu, F., Cui, B., Wu, W., 10.1016/j.apm.2007.10.021, Appl. Math. Modelling 33 (2009), 198-210. (2009) Zbl1167.34384MR2458506DOI10.1016/j.apm.2007.10.021
  24. Roska, T., Chua, L. O., 10.1002/cta.4490200504, Int. J. Circuit Theory Appl. 20 (1992), 469-481. (1992) Zbl0775.92011DOI10.1002/cta.4490200504
  25. Xiang, H., Cao, J., 10.1016/j.na.2009.05.079, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 6097-6108. (2009) Zbl1196.34096MR2566514DOI10.1016/j.na.2009.05.079
  26. Yu, Y., Cai, M., 10.1016/j.mcm.2007.06.014, Math. Comput. Modelling 47 (2008), 943-951. (2008) Zbl1144.34370MR2413726DOI10.1016/j.mcm.2007.06.014
  27. Zhang, C., 10.1006/jmaa.1994.1005, J. Math. Anal. Appl. 181 (1994), 62-76. (1994) Zbl0796.34029MR1257954DOI10.1006/jmaa.1994.1005
  28. Zhang, C., 10.1006/jmaa.1995.1189, J. Math. Anal. Appl. 192 (1995), 543-561. (1995) Zbl0826.34040MR1332227DOI10.1006/jmaa.1995.1189
  29. Zhao, H., 10.1016/S0096-3003(03)00743-4, Appl. Math. Comput. 154 (2004), 683-695. (2004) Zbl1057.34099MR2072813DOI10.1016/S0096-3003(03)00743-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.