Lie groupoids of mappings taking values in a Lie groupoid
Habib Amiri; Helge Glöckner; Alexander Schmeding
Archivum Mathematicum (2020)
- Volume: 056, Issue: 5, page 307-356
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAmiri, Habib, Glöckner, Helge, and Schmeding, Alexander. "Lie groupoids of mappings taking values in a Lie groupoid." Archivum Mathematicum 056.5 (2020): 307-356. <http://eudml.org/doc/297032>.
@article{Amiri2020,
abstract = {Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups modelled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids which we call current groupoids. We then study basic differential geometry and Lie theory for these Lie groupoids of mappings. In particular, we show that certain Lie groupoid properties, like being a proper étale Lie groupoid, are inherited by the current groupoid. Furthermore, we identify the Lie algebroid of a current groupoid as a current algebroid (analogous to the current Lie algebra associated to a current Lie group). To establish these results, we study superposition operators \[ C^\ell (K,f)\colon C^\ell (K,M)\rightarrow C^\ell (K,N)\,,\;\, \gamma f\circ \gamma \]
between manifolds of $C^\ell $-functions. Under natural hypotheses, $C^\ell (K,f)$ turns out to be a submersion (an immersion, an embedding, proper, resp., a local diffeomorphism) if so is the underlying map $f\colon M\rightarrow N$. These results are new in their generality and of independent interest.},
author = {Amiri, Habib, Glöckner, Helge, Schmeding, Alexander},
journal = {Archivum Mathematicum},
keywords = {Lie groupoid; Lie algebroid; topological groupoid; mapping groupoid; current groupoid; manifold of mappings; superposition operator; Nemytskii operator; pushforward; submersion; immersion; embedding; local diffeomorphism; 1-cmd 1étale map; proper map; perfect map; orbifold groupoid; transitivity; local transitivity; local triviality; Stacey-Roberts Lemma},
language = {eng},
number = {5},
pages = {307-356},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lie groupoids of mappings taking values in a Lie groupoid},
url = {http://eudml.org/doc/297032},
volume = {056},
year = {2020},
}
TY - JOUR
AU - Amiri, Habib
AU - Glöckner, Helge
AU - Schmeding, Alexander
TI - Lie groupoids of mappings taking values in a Lie groupoid
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 5
SP - 307
EP - 356
AB - Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups modelled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids which we call current groupoids. We then study basic differential geometry and Lie theory for these Lie groupoids of mappings. In particular, we show that certain Lie groupoid properties, like being a proper étale Lie groupoid, are inherited by the current groupoid. Furthermore, we identify the Lie algebroid of a current groupoid as a current algebroid (analogous to the current Lie algebra associated to a current Lie group). To establish these results, we study superposition operators \[ C^\ell (K,f)\colon C^\ell (K,M)\rightarrow C^\ell (K,N)\,,\;\, \gamma f\circ \gamma \]
between manifolds of $C^\ell $-functions. Under natural hypotheses, $C^\ell (K,f)$ turns out to be a submersion (an immersion, an embedding, proper, resp., a local diffeomorphism) if so is the underlying map $f\colon M\rightarrow N$. These results are new in their generality and of independent interest.
LA - eng
KW - Lie groupoid; Lie algebroid; topological groupoid; mapping groupoid; current groupoid; manifold of mappings; superposition operator; Nemytskii operator; pushforward; submersion; immersion; embedding; local diffeomorphism; 1-cmd 1étale map; proper map; perfect map; orbifold groupoid; transitivity; local transitivity; local triviality; Stacey-Roberts Lemma
UR - http://eudml.org/doc/297032
ER -
References
top- Alzaareer, H., Schmeding, A., 10.1016/j.exmath.2014.07.002, Expo. Math. 33 (2015), no. 2, 184–222. MR 3342623 DOI: http://dx.doi.org/10.1016/j.exmath.2014.07.002 (2015) MR3342623DOI10.1016/j.exmath.2014.07.002
- Amiri, H., 10.1007/s00233-017-9857-6, Semigroup Forum (2017), 1–12. DOI: http://dx.doi.org/10.1007/s00233-017-9857-6 (2017) MR3750347DOI10.1007/s00233-017-9857-6
- Amiri, H., Schmeding, A., Linking Lie groupoid representations and representations of infinite-dimensional Lie groups, 2018. (2018) MR3951756
- Amiri, H., Schmeding, A., A differentiable monoid of smooth maps on Lie groupoids, J. Lie Theory 29 (4) (2019), 1167–1192. (2019) MR4022150
- Bastiani, A., 10.1007/BF02786619, J. Analyse Math. 13 (1964), 1–114. MR 0177277 (1964) MR0177277DOI10.1007/BF02786619
- Beltiţă, D., Goliński, T., Jakimowicz, G., Pelletier, F., 10.1016/j.jfa.2018.12.002, J. Funct. Anal. 276 (5) (2019), 1528–1574. (2019) MR3912784DOI10.1016/j.jfa.2018.12.002
- Bertram, W., Glöckner, H., Neeb, K.-H., 10.1016/S0723-0869(04)80006-9, Expo. Math. 22 (2004), no. 3, 213–282. MR 2069671 (2005e:26042) DOI: http://dx.doi.org/10.1016/S0723-0869(04)80006-9 (2004) Zbl1099.58006MR2069671DOI10.1016/S0723-0869(04)80006-9
- Bridson, M.R., Haefliger, A., 10.1007/978-3-662-12494-9, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 DOI: http://dx.doi.org/10.1007/978-3-662-12494-9 (1999) MR1744486DOI10.1007/978-3-662-12494-9
- Chen, Weimin, 10.1142/S0219199706002246, Commun. Contemp. Math. 8 (2006), no. 5, 569–620. MR 2263948 DOI: http://dx.doi.org/10.1142/S0219199706002246 (2006) MR2263948DOI10.1142/S0219199706002246
- Coufal, V., Pronk, D., Rovi, C., Scull, L., Thatcher, C., 10.1090/conm/641/12857, Women in topology: collaborations in homotopy theory, Contemp. Math., vol. 641, Amer. Math. Soc., Providence, RI, 2015, pp. 135–166. MR 3380073 DOI: http://dx.doi.org/10.1090/conm/641/12857 (2015) MR3380073DOI10.1090/conm/641/12857
- Crainic, M., Fernandes, R.L., 10.4007/annals.2003.157.575, Ann. of Math. (2) 157 (2003), no. 2, 575–620. MR 1973056 DOI: http://dx.doi.org/10.4007/annals.2003.157.575 (2003) MR1973056DOI10.4007/annals.2003.157.575
- Dahmen, R., Glöckner, H., Schmeding, A., Complexifications of infinite-dimensional manifolds and new constructions of infinite-dimensional Lie groups, 2016. (2016)
- Eells, J.Jr., 10.1090/S0002-9904-1966-11558-6, Bull. Amer. Math. Soc. 72 (1966), 751–807. MR 0203742 DOI: http://dx.doi.org/10.1090/S0002-9904-1966-11558-6 (1966) MR0203742DOI10.1090/S0002-9904-1966-11558-6
- Engelking, R., General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann, Berlin, 1989. (1989) Zbl0684.54001MR1039321
- Glöckner, H., Infinite-dimensional Lie groups without completeness restrictions, Geometry and Analysis on Lie Groups (Strasburger, A., Hilgert, J., Neeb, K.-H., Wojtyński, W., eds.), Banach Center Publication, vol. 55, Warsaw, 2002, pp. 43–59. (2002) MR1911979
- Glöckner, H., 10.1006/jfan.2002.3942, J. Funct. Anal. 194 (2002), no. 2, 347–409. MR 1934608 DOI: http://dx.doi.org/10.1006/jfan.2002.3942 (2002) MR1934608DOI10.1006/jfan.2002.3942
- Glöckner, H., Regularity properties of infinite-dimensional Lie groups, and semiregularity, 2015. (2015)
- Glöckner, H., Fundamentals of submersions and immersions between infinite-dimensional manifolds, 2016. (2016)
- Glöckner, H., Neeb, K.-H., Infinite-dimensional Lie groups, book in preparation.
- Glöckner, H., Neeb, K.-H., 10.1016/j.indag.2017.04.004, Indag. Math. (N.S.) 28 (2017), no. 4, 760–783. MR 3679741 DOI: http://dx.doi.org/10.1016/j.indag.2017.04.004 (2017) MR3679741DOI10.1016/j.indag.2017.04.004
- Hamilton, R.S., 10.1090/S0273-0979-1982-15004-2, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198 DOI: http://dx.doi.org/10.1090/S0273-0979-1982-15004-2 (1982) Zbl0499.58003MR0656198DOI10.1090/S0273-0979-1982-15004-2
- Hjelle, E.O., Schmeding, A., 10.1016/j.exmath.2016.07.004, Expo. Math. 35 (2017), no. 1, 13–53. MR 3626202 DOI: http://dx.doi.org/10.1016/j.exmath.2016.07.004 (2017) MR3626202DOI10.1016/j.exmath.2016.07.004
- Kac, V.G., 10.1017/CBO9780511626234, third ed., Cambridge University Press, Cambridge, 1990. MR 1104219 DOI: http://dx.doi.org/10.1017/CBO9780511626234 (1990) MR1104219DOI10.1017/CBO9780511626234
- Keller, H.H., Differential calculus in locally convex spaces, Lecture Notes in Math., Vol. 417, Springer-Verlag, Berlin-New York, 1974. MR 0440592 (55 #13466) (1974) Zbl0293.58001MR0440592
- Kriegl, A., Michor, P.W., The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs 53, Amer. Math. Soc., Providence R.I., 1997. (1997) Zbl0889.58001MR1471480
- Lang, S., Fundamentals of Differential Geometry, Graduate texts in mathematics 191, Springer, New York, 2001. (2001) MR1666820
- Lerman, E., 10.4171/LEM/56-3-4, Enseign. Math. (2) 56 (2010), no. 3-4, 315–363. MR 2778793 DOI: http://dx.doi.org/10.4171/LEM/56-3-4 (2010) MR2778793DOI10.4171/LEM/56-3-4
- Meinrencken, E., Lie Groupoids and Lie algebroids, Lecture notes Fall 2017. (2017)
- Meyer, R., Zhu, Ch., Groupoids in categories with pretopology, Theory Appl. Categ. 30 (2015), Paper No. 55, 1906–1998. MR 3438234 (2015) MR3438234
- Michor, P.W., Manifolds of Differentiable Mappings, Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980. MR MR583436 (83g:58009) (1980) Zbl0433.58001MR0583436
- Milnor, J., Remarks on infinite-dimensional Lie groups, Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 1007–1057. MR MR830252 (87g:22024) (1984) Zbl0594.22009MR0830252
- Moerdijk, I., Mrčun, J., 10.1017/CBO9780511615450, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261 DOI: http://dx.doi.org/10.1017/CBO9780511615450 (2003) MR2012261DOI10.1017/CBO9780511615450
- Moerdijk, I., Pronk, D.A., 10.1023/A:1007767628271, -Theory 12 (1997), no. 1, 3–21. MR 1466622 DOI: http://dx.doi.org/10.1023/A:1007767628271 (1997) MR1466622DOI10.1023/A:1007767628271
- Neeb, K.-H., 10.1007/s11537-006-0606-y, Japanese J. Math. 1 (2006), no. 2, 291–468. MR MR2261066 (2006) Zbl1161.22012MR2261066DOI10.1007/s11537-006-0606-y
- Neeb, K.-H., Wagemann, F., 10.1007/s10711-008-9244-2, Geom. Dedicata 134 (2008), 17–60. MR 2399649 DOI: http://dx.doi.org/10.1007/s10711-008-9244-2 (2008) Zbl1143.22016MR2399649DOI10.1007/s10711-008-9244-2
- Palais, R.S., Foundations of global non-linear analysis, W.A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0248880 (1968) MR0248880
- Palais, R.S., 10.2307/2037337, Proc. Amer. Math. Soc. 24 (1970), 835–836. MR 0254818 DOI: http://dx.doi.org/10.2307/2037337 (1970) MR0254818DOI10.2307/2037337
- Pohl, A.D., 10.2969/jmsj/06920755, J. Math. Soc. Japan 69 (2017), no. 2, 755–800. MR 3638284 DOI: http://dx.doi.org/10.2969/jmsj/06920755 (2017) MR3638284DOI10.2969/jmsj/06920755
- Pressley, A., Segal, G., Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986, Oxford Science Publications. MR 900587 (1986) MR0900587
- Roberts, D.M., Schmeding, A., Extending Whitney’s extension theorem: nonlinear function spaces, to appear in Annales de l'Institut Fourier, 2018. (2018)
- Roberts, D.M., Vozzo, R.F., Smooth loop stacks of differentiable stacks and gerbes, Cah. Topol. Géom. Différ. Catég. 59 (2018), no. 2, 95–141. MR 3727316 (2018) MR3727316
- Roberts, D.M., Vozzo, R.F., The smooth Hom-stack of an orbifold, 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 43–47. MR 3792515 (2018) MR3792515
- Schmeding, A., 10.4064/dm507-0-1, Dissertationes Math. (Rozprawy Mat.) 507 (2015), 179. MR 3328452 DOI: http://dx.doi.org/10.4064/dm507-0-1 (2015) DOI10.4064/dm507-0-1
- Schmeding, A., Wockel, Ch., 10.1007/s10455-015-9459-z, Ann. Global Anal. Geom. 48 (2015), no. 1, 87–123. MR 3351079 DOI: http://dx.doi.org/10.1007/s10455-015-9459-z (2015) MR3351079DOI10.1007/s10455-015-9459-z
- Schmeding, A., Wockel, Ch., 10.1016/j.difgeo.2016.07.009, Differential Geom. Appl. 49 (2016), 227–276. MR 3573833 DOI: http://dx.doi.org/10.1016/j.difgeo.2016.07.009 (2016) MR3573833DOI10.1016/j.difgeo.2016.07.009
- Weinmann, Th.O., 10.3929/ethz-a-005540169, Ph.D. thesis, ETH Zürich, 2007. DOI: http://dx.doi.org/10.3929/ethz-a-005540169 (2007) DOI10.3929/ethz-a-005540169
- Wittmann, J., 10.1016/j.difgeo.2019.01.001, Differential Geom. Appl. 63 2) (2019), 166–185. (2019) MR3903188DOI10.1016/j.difgeo.2019.01.001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.