Lie groupoids of mappings taking values in a Lie groupoid

Habib Amiri; Helge Glöckner; Alexander Schmeding

Archivum Mathematicum (2020)

  • Volume: 056, Issue: 5, page 307-356
  • ISSN: 0044-8753

Abstract

top
Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups modelled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids which we call current groupoids. We then study basic differential geometry and Lie theory for these Lie groupoids of mappings. In particular, we show that certain Lie groupoid properties, like being a proper étale Lie groupoid, are inherited by the current groupoid. Furthermore, we identify the Lie algebroid of a current groupoid as a current algebroid (analogous to the current Lie algebra associated to a current Lie group). To establish these results, we study superposition operators C ( K , f ) : C ( K , M ) C ( K , N ) , γ f γ between manifolds of C -functions. Under natural hypotheses, C ( K , f ) turns out to be a submersion (an immersion, an embedding, proper, resp., a local diffeomorphism) if so is the underlying map f : M N . These results are new in their generality and of independent interest.

How to cite

top

Amiri, Habib, Glöckner, Helge, and Schmeding, Alexander. "Lie groupoids of mappings taking values in a Lie groupoid." Archivum Mathematicum 056.5 (2020): 307-356. <http://eudml.org/doc/297032>.

@article{Amiri2020,
abstract = {Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups modelled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids which we call current groupoids. We then study basic differential geometry and Lie theory for these Lie groupoids of mappings. In particular, we show that certain Lie groupoid properties, like being a proper étale Lie groupoid, are inherited by the current groupoid. Furthermore, we identify the Lie algebroid of a current groupoid as a current algebroid (analogous to the current Lie algebra associated to a current Lie group). To establish these results, we study superposition operators \[ C^\ell (K,f)\colon C^\ell (K,M)\rightarrow C^\ell (K,N)\,,\;\, \gamma f\circ \gamma \] between manifolds of $C^\ell $-functions. Under natural hypotheses, $C^\ell (K,f)$ turns out to be a submersion (an immersion, an embedding, proper, resp., a local diffeomorphism) if so is the underlying map $f\colon M\rightarrow N$. These results are new in their generality and of independent interest.},
author = {Amiri, Habib, Glöckner, Helge, Schmeding, Alexander},
journal = {Archivum Mathematicum},
keywords = {Lie groupoid; Lie algebroid; topological groupoid; mapping groupoid; current groupoid; manifold of mappings; superposition operator; Nemytskii operator; pushforward; submersion; immersion; embedding; local diffeomorphism; 1-cmd 1étale map; proper map; perfect map; orbifold groupoid; transitivity; local transitivity; local triviality; Stacey-Roberts Lemma},
language = {eng},
number = {5},
pages = {307-356},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lie groupoids of mappings taking values in a Lie groupoid},
url = {http://eudml.org/doc/297032},
volume = {056},
year = {2020},
}

TY - JOUR
AU - Amiri, Habib
AU - Glöckner, Helge
AU - Schmeding, Alexander
TI - Lie groupoids of mappings taking values in a Lie groupoid
JO - Archivum Mathematicum
PY - 2020
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 056
IS - 5
SP - 307
EP - 356
AB - Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups modelled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids which we call current groupoids. We then study basic differential geometry and Lie theory for these Lie groupoids of mappings. In particular, we show that certain Lie groupoid properties, like being a proper étale Lie groupoid, are inherited by the current groupoid. Furthermore, we identify the Lie algebroid of a current groupoid as a current algebroid (analogous to the current Lie algebra associated to a current Lie group). To establish these results, we study superposition operators \[ C^\ell (K,f)\colon C^\ell (K,M)\rightarrow C^\ell (K,N)\,,\;\, \gamma f\circ \gamma \] between manifolds of $C^\ell $-functions. Under natural hypotheses, $C^\ell (K,f)$ turns out to be a submersion (an immersion, an embedding, proper, resp., a local diffeomorphism) if so is the underlying map $f\colon M\rightarrow N$. These results are new in their generality and of independent interest.
LA - eng
KW - Lie groupoid; Lie algebroid; topological groupoid; mapping groupoid; current groupoid; manifold of mappings; superposition operator; Nemytskii operator; pushforward; submersion; immersion; embedding; local diffeomorphism; 1-cmd 1étale map; proper map; perfect map; orbifold groupoid; transitivity; local transitivity; local triviality; Stacey-Roberts Lemma
UR - http://eudml.org/doc/297032
ER -

References

top
  1. Alzaareer, H., Schmeding, A., 10.1016/j.exmath.2014.07.002, Expo. Math. 33 (2015), no. 2, 184–222. MR 3342623 DOI: http://dx.doi.org/10.1016/j.exmath.2014.07.002 (2015) MR3342623DOI10.1016/j.exmath.2014.07.002
  2. Amiri, H., 10.1007/s00233-017-9857-6, Semigroup Forum (2017), 1–12. DOI: http://dx.doi.org/10.1007/s00233-017-9857-6 (2017) MR3750347DOI10.1007/s00233-017-9857-6
  3. Amiri, H., Schmeding, A., Linking Lie groupoid representations and representations of infinite-dimensional Lie groups, 2018. (2018) MR3951756
  4. Amiri, H., Schmeding, A., A differentiable monoid of smooth maps on Lie groupoids, J. Lie Theory 29 (4) (2019), 1167–1192. (2019) MR4022150
  5. Bastiani, A., 10.1007/BF02786619, J. Analyse Math. 13 (1964), 1–114. MR 0177277 (1964) MR0177277DOI10.1007/BF02786619
  6. Beltiţă, D., Goliński, T., Jakimowicz, G., Pelletier, F., 10.1016/j.jfa.2018.12.002, J. Funct. Anal. 276 (5) (2019), 1528–1574. (2019) MR3912784DOI10.1016/j.jfa.2018.12.002
  7. Bertram, W., Glöckner, H., Neeb, K.-H., 10.1016/S0723-0869(04)80006-9, Expo. Math. 22 (2004), no. 3, 213–282. MR 2069671 (2005e:26042) DOI: http://dx.doi.org/10.1016/S0723-0869(04)80006-9 (2004) Zbl1099.58006MR2069671DOI10.1016/S0723-0869(04)80006-9
  8. Bridson, M.R., Haefliger, A., 10.1007/978-3-662-12494-9, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 DOI: http://dx.doi.org/10.1007/978-3-662-12494-9 (1999) MR1744486DOI10.1007/978-3-662-12494-9
  9. Chen, Weimin, 10.1142/S0219199706002246, Commun. Contemp. Math. 8 (2006), no. 5, 569–620. MR 2263948 DOI: http://dx.doi.org/10.1142/S0219199706002246 (2006) MR2263948DOI10.1142/S0219199706002246
  10. Coufal, V., Pronk, D., Rovi, C., Scull, L., Thatcher, C., 10.1090/conm/641/12857, Women in topology: collaborations in homotopy theory, Contemp. Math., vol. 641, Amer. Math. Soc., Providence, RI, 2015, pp. 135–166. MR 3380073 DOI: http://dx.doi.org/10.1090/conm/641/12857 (2015) MR3380073DOI10.1090/conm/641/12857
  11. Crainic, M., Fernandes, R.L., 10.4007/annals.2003.157.575, Ann. of Math. (2) 157 (2003), no. 2, 575–620. MR 1973056 DOI: http://dx.doi.org/10.4007/annals.2003.157.575 (2003) MR1973056DOI10.4007/annals.2003.157.575
  12. Dahmen, R., Glöckner, H., Schmeding, A., Complexifications of infinite-dimensional manifolds and new constructions of infinite-dimensional Lie groups, 2016. (2016) 
  13. Eells, J.Jr., 10.1090/S0002-9904-1966-11558-6, Bull. Amer. Math. Soc. 72 (1966), 751–807. MR 0203742 DOI: http://dx.doi.org/10.1090/S0002-9904-1966-11558-6 (1966) MR0203742DOI10.1090/S0002-9904-1966-11558-6
  14. Engelking, R., General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann, Berlin, 1989. (1989) Zbl0684.54001MR1039321
  15. Glöckner, H., Infinite-dimensional Lie groups without completeness restrictions, Geometry and Analysis on Lie Groups (Strasburger, A., Hilgert, J., Neeb, K.-H., Wojtyński, W., eds.), Banach Center Publication, vol. 55, Warsaw, 2002, pp. 43–59. (2002) MR1911979
  16. Glöckner, H., 10.1006/jfan.2002.3942, J. Funct. Anal. 194 (2002), no. 2, 347–409. MR 1934608 DOI: http://dx.doi.org/10.1006/jfan.2002.3942 (2002) MR1934608DOI10.1006/jfan.2002.3942
  17. Glöckner, H., Regularity properties of infinite-dimensional Lie groups, and semiregularity, 2015. (2015) 
  18. Glöckner, H., Fundamentals of submersions and immersions between infinite-dimensional manifolds, 2016. (2016) 
  19. Glöckner, H., Neeb, K.-H., Infinite-dimensional Lie groups, book in preparation. 
  20. Glöckner, H., Neeb, K.-H., 10.1016/j.indag.2017.04.004, Indag. Math. (N.S.) 28 (2017), no. 4, 760–783. MR 3679741 DOI: http://dx.doi.org/10.1016/j.indag.2017.04.004 (2017) MR3679741DOI10.1016/j.indag.2017.04.004
  21. Hamilton, R.S., 10.1090/S0273-0979-1982-15004-2, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198 DOI: http://dx.doi.org/10.1090/S0273-0979-1982-15004-2 (1982) Zbl0499.58003MR0656198DOI10.1090/S0273-0979-1982-15004-2
  22. Hjelle, E.O., Schmeding, A., 10.1016/j.exmath.2016.07.004, Expo. Math. 35 (2017), no. 1, 13–53. MR 3626202 DOI: http://dx.doi.org/10.1016/j.exmath.2016.07.004 (2017) MR3626202DOI10.1016/j.exmath.2016.07.004
  23. Kac, V.G., 10.1017/CBO9780511626234, third ed., Cambridge University Press, Cambridge, 1990. MR 1104219 DOI: http://dx.doi.org/10.1017/CBO9780511626234 (1990) MR1104219DOI10.1017/CBO9780511626234
  24. Keller, H.H., Differential calculus in locally convex spaces, Lecture Notes in Math., Vol. 417, Springer-Verlag, Berlin-New York, 1974. MR 0440592 (55 #13466) (1974) Zbl0293.58001MR0440592
  25. Kriegl, A., Michor, P.W., The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs 53, Amer. Math. Soc., Providence R.I., 1997. (1997) Zbl0889.58001MR1471480
  26. Lang, S., Fundamentals of Differential Geometry, Graduate texts in mathematics 191, Springer, New York, 2001. (2001) MR1666820
  27. Lerman, E., 10.4171/LEM/56-3-4, Enseign. Math. (2) 56 (2010), no. 3-4, 315–363. MR 2778793 DOI: http://dx.doi.org/10.4171/LEM/56-3-4 (2010) MR2778793DOI10.4171/LEM/56-3-4
  28. Meinrencken, E., Lie Groupoids and Lie algebroids, Lecture notes Fall 2017. (2017) 
  29. Meyer, R., Zhu, Ch., Groupoids in categories with pretopology, Theory Appl. Categ. 30 (2015), Paper No. 55, 1906–1998. MR 3438234 (2015) MR3438234
  30. Michor, P.W., Manifolds of Differentiable Mappings, Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980. MR MR583436 (83g:58009) (1980) Zbl0433.58001MR0583436
  31. Milnor, J., Remarks on infinite-dimensional Lie groups, Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 1007–1057. MR MR830252 (87g:22024) (1984) Zbl0594.22009MR0830252
  32. Moerdijk, I., Mrčun, J., 10.1017/CBO9780511615450, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261 DOI: http://dx.doi.org/10.1017/CBO9780511615450 (2003) MR2012261DOI10.1017/CBO9780511615450
  33. Moerdijk, I., Pronk, D.A., 10.1023/A:1007767628271, -Theory 12 (1997), no. 1, 3–21. MR 1466622 DOI: http://dx.doi.org/10.1023/A:1007767628271 (1997) MR1466622DOI10.1023/A:1007767628271
  34. Neeb, K.-H., 10.1007/s11537-006-0606-y, Japanese J. Math. 1 (2006), no. 2, 291–468. MR MR2261066 (2006) Zbl1161.22012MR2261066DOI10.1007/s11537-006-0606-y
  35. Neeb, K.-H., Wagemann, F., 10.1007/s10711-008-9244-2, Geom. Dedicata 134 (2008), 17–60. MR 2399649 DOI: http://dx.doi.org/10.1007/s10711-008-9244-2 (2008) Zbl1143.22016MR2399649DOI10.1007/s10711-008-9244-2
  36. Palais, R.S., Foundations of global non-linear analysis, W.A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0248880 (1968) MR0248880
  37. Palais, R.S., 10.2307/2037337, Proc. Amer. Math. Soc. 24 (1970), 835–836. MR 0254818 DOI: http://dx.doi.org/10.2307/2037337 (1970) MR0254818DOI10.2307/2037337
  38. Pohl, A.D., 10.2969/jmsj/06920755, J. Math. Soc. Japan 69 (2017), no. 2, 755–800. MR 3638284 DOI: http://dx.doi.org/10.2969/jmsj/06920755 (2017) MR3638284DOI10.2969/jmsj/06920755
  39. Pressley, A., Segal, G., Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986, Oxford Science Publications. MR 900587 (1986) MR0900587
  40. Roberts, D.M., Schmeding, A., Extending Whitney’s extension theorem: nonlinear function spaces, to appear in Annales de l'Institut Fourier, 2018. (2018) 
  41. Roberts, D.M., Vozzo, R.F., Smooth loop stacks of differentiable stacks and gerbes, Cah. Topol. Géom. Différ. Catég. 59 (2018), no. 2, 95–141. MR 3727316 (2018) MR3727316
  42. Roberts, D.M., Vozzo, R.F., The smooth Hom-stack of an orbifold, 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 43–47. MR 3792515 (2018) MR3792515
  43. Schmeding, A., 10.4064/dm507-0-1, Dissertationes Math. (Rozprawy Mat.) 507 (2015), 179. MR 3328452 DOI: http://dx.doi.org/10.4064/dm507-0-1 (2015) DOI10.4064/dm507-0-1
  44. Schmeding, A., Wockel, Ch., 10.1007/s10455-015-9459-z, Ann. Global Anal. Geom. 48 (2015), no. 1, 87–123. MR 3351079 DOI: http://dx.doi.org/10.1007/s10455-015-9459-z (2015) MR3351079DOI10.1007/s10455-015-9459-z
  45. Schmeding, A., Wockel, Ch., 10.1016/j.difgeo.2016.07.009, Differential Geom. Appl. 49 (2016), 227–276. MR 3573833 DOI: http://dx.doi.org/10.1016/j.difgeo.2016.07.009 (2016) MR3573833DOI10.1016/j.difgeo.2016.07.009
  46. Weinmann, Th.O., 10.3929/ethz-a-005540169, Ph.D. thesis, ETH Zürich, 2007. DOI: http://dx.doi.org/10.3929/ethz-a-005540169 (2007) DOI10.3929/ethz-a-005540169
  47. Wittmann, J., 10.1016/j.difgeo.2019.01.001, Differential Geom. Appl. 63 2) (2019), 166–185. (2019) MR3903188DOI10.1016/j.difgeo.2019.01.001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.