Lipschitz approximable Banach spaces

Gilles Godefroy

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 2, page 187-193
  • ISSN: 0010-2628

Abstract

top
We show the existence of Lipschitz approximable separable spaces which fail Grothendieck's approximation property. This follows from the observation that any separable space with the metric compact approximation property is Lipschitz approximable. Some related results are spelled out.

How to cite

top

Godefroy, Gilles. "Lipschitz approximable Banach spaces." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 187-193. <http://eudml.org/doc/297033>.

@article{Godefroy2020,
abstract = {We show the existence of Lipschitz approximable separable spaces which fail Grothendieck's approximation property. This follows from the observation that any separable space with the metric compact approximation property is Lipschitz approximable. Some related results are spelled out.},
author = {Godefroy, Gilles},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {compact approximation property; Lipschitz map; Lipschitz-free Banach space},
language = {eng},
number = {2},
pages = {187-193},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Lipschitz approximable Banach spaces},
url = {http://eudml.org/doc/297033},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Godefroy, Gilles
TI - Lipschitz approximable Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 187
EP - 193
AB - We show the existence of Lipschitz approximable separable spaces which fail Grothendieck's approximation property. This follows from the observation that any separable space with the metric compact approximation property is Lipschitz approximable. Some related results are spelled out.
LA - eng
KW - compact approximation property; Lipschitz map; Lipschitz-free Banach space
UR - http://eudml.org/doc/297033
ER -

References

top
  1. Borel-Mathurin L., Approximation properties and non-linear geometry of Banach spaces, Houston J. Math. 38 (2012), no. 4, 1135–1148. MR3019026
  2. Casazza P., 10.1016/S1874-5849(01)80009-7, Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, pages 271–316. MR1863695DOI10.1016/S1874-5849(01)80009-7
  3. Cho C.-M., Johnson W. B., A characterization of subspaces X of l p for which K ( X ) is an M -ideal in L ( X ) , Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470. MR0774004
  4. Godefroy G., A survey on Lipschitz-free Banach spaces, Comment. Math. 55 (2015), no. 2, 89–118. MR3518958
  5. Godefroy G., Extensions of Lipschitz functions and Grothendieck's bounded approximation property, North-West. Eur. J. Math. 1 (2015), 1–6. MR3417417
  6. Godefroy G., Kalton N. J., 10.4064/sm159-1-6, Studia Math. 159 (2003), no. 1, 121–141. MR2030906DOI10.4064/sm159-1-6
  7. Godefroy G., Lancien G., Zizler V., 10.1216/RMJ-2014-44-5-1529, Rocky Mountain J. Math. 44 (2014), no. 5, 1529–1584. MR3295641DOI10.1216/RMJ-2014-44-5-1529
  8. Godefroy G., Ozawa N., 10.1090/S0002-9939-2014-11933-2, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1681–1687. MR3168474DOI10.1090/S0002-9939-2014-11933-2
  9. Jiménez-Vargas A., Sepulcre J. M., Villegas-Vallecillos M., 10.1016/j.jmaa.2014.02.012, J. Math. Anal. Appl. 415 (2014), no. 2, 889–901. MR3178297DOI10.1016/j.jmaa.2014.02.012
  10. Kalton N. J., Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171–217. MR2068975
  11. Kalton N. J., 10.1007/s00208-011-0743-3, Math. Ann. 354 (2012), no. 4, 1247–1288. MR2992997DOI10.1007/s00208-011-0743-3
  12. Oja E., On bounded approximation properties of Banach spaces, Banach algebras 2009, Banach Center Publ., 91, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pages 219–231. MR2777497
  13. Pernecka E., Smith R. J., 10.1016/j.jat.2015.06.003, J. Approx. Theory 199 (2015), 29–44. MR3389905DOI10.1016/j.jat.2015.06.003
  14. Thele R. L., 10.1090/S0002-9939-1974-0328550-1, Proc. Amer. Math. Soc. 42 (1974), 483–486. MR0328550DOI10.1090/S0002-9939-1974-0328550-1
  15. Willis G., 10.4064/sm-103-1-99-108, Studia Math. 103 (1992), no. 1, 99–108. MR1184105DOI10.4064/sm-103-1-99-108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.