On a singular multi-point third-order boundary value problem on the half-line
Mathematica Bohemica (2020)
- Volume: 145, Issue: 3, page 305-324
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBenbaziz, Zakia, and Djebali, Smail. "On a singular multi-point third-order boundary value problem on the half-line." Mathematica Bohemica 145.3 (2020): 305-324. <http://eudml.org/doc/297034>.
@article{Benbaziz2020,
abstract = {We establish not only sufficient but also necessary conditions for existence of solutions to a singular multi-point third-order boundary value problem posed on the half-line. Our existence results are based on the Krasnosel’skii fixed point theorem on cone compression and expansion. Nonexistence results are proved under suitable a priori estimates. The nonlinearity $f=f(t,x,y)$ which satisfies upper and lower-homogeneity conditions in the space variables $x, y$ may be also singular at time $t=0$. Two examples of applications are included to illustrate the existence theorems.},
author = {Benbaziz, Zakia, Djebali, Smail},
journal = {Mathematica Bohemica},
keywords = {singular nonlinear boundary value problem; positive solution; Krasnosel'skii fixed point theorem; multi-point; half-line},
language = {eng},
number = {3},
pages = {305-324},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a singular multi-point third-order boundary value problem on the half-line},
url = {http://eudml.org/doc/297034},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Benbaziz, Zakia
AU - Djebali, Smail
TI - On a singular multi-point third-order boundary value problem on the half-line
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 3
SP - 305
EP - 324
AB - We establish not only sufficient but also necessary conditions for existence of solutions to a singular multi-point third-order boundary value problem posed on the half-line. Our existence results are based on the Krasnosel’skii fixed point theorem on cone compression and expansion. Nonexistence results are proved under suitable a priori estimates. The nonlinearity $f=f(t,x,y)$ which satisfies upper and lower-homogeneity conditions in the space variables $x, y$ may be also singular at time $t=0$. Two examples of applications are included to illustrate the existence theorems.
LA - eng
KW - singular nonlinear boundary value problem; positive solution; Krasnosel'skii fixed point theorem; multi-point; half-line
UR - http://eudml.org/doc/297034
ER -
References
top- Agarwal, R. P., O'Regan, D., 10.1007/978-94-010-0718-4, Kluwer Academic Publishers, Dordrecht (2001). (2001) Zbl0988.34002MR1845855DOI10.1007/978-94-010-0718-4
- Chen, S., Zhang, Y., 10.1006/jmaa.1995.1367, J. Math. Anal. Appl. 195 (1995), 449-468. (1995) Zbl0852.34019MR1354555DOI10.1006/jmaa.1995.1367
- Corduneanu, C., 10.1016/s0076-5392(08)x6099-0, Mathematics in Science and Engineering 104. Academic Press, New York (1973). (1973) Zbl0273.45001MR0358245DOI10.1016/s0076-5392(08)x6099-0
- Djebali, S., Mebarki, K., 10.1016/j.camwa.2007.11.023, Comput. Math. Appl. 55 (2008), 2940-2952. (2008) Zbl1142.34316MR2401442DOI10.1016/j.camwa.2007.11.023
- Djebali, S., Saifi, O., Third order BVPs with -Laplacian operators on , Afr. Diaspora J. Math. 16 (2013), 1-17. (2013) Zbl1283.34019MR3091711
- Guo, D. J., Lakshmikantham, V., 10.1016/c2013-0-10750-7, Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889DOI10.1016/c2013-0-10750-7
- Liang, S., Zhang, J., 10.1007/s10440-009-9528-z, Acta Appl. Math. 111 (2010), 27-43. (2010) Zbl1203.34038MR2653048DOI10.1007/s10440-009-9528-z
- Liu, Y., 10.1016/S0096-3003(02)00431-9, Appl. Math. Comput. 144 (2003), 543-556. (2003) Zbl1036.34027MR1994092DOI10.1016/S0096-3003(02)00431-9
- Wei, Z., 10.1016/j.amc.2005.11.077, Appl. Math. Comput. 179 (2006), 67-78. (2006) Zbl1166.34305MR2260858DOI10.1016/j.amc.2005.11.077
- Wei, Z., 10.1007/s12190-014-0756-7, J. Appl. Math. Comput. 46 (2014), 407-422. (2014) Zbl1311.34052MR3252121DOI10.1007/s12190-014-0756-7
- Yan, B., O'Regan, D., Agarwal, R. P., 10.1619/fesi.51.81, Funkc. Ekvacioj, Ser. Int. 51 (2008), 81-106. (2008) Zbl1158.34011MR2427544DOI10.1619/fesi.51.81
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.