Repdigits in the base as sums of four balancing numbers
Mathematica Bohemica (2021)
- Issue: 1, page 55-68
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKeskin, Refik, and Erduvan, Faticko. "Repdigits in the base $b$ as sums of four balancing numbers." Mathematica Bohemica (2021): 55-68. <http://eudml.org/doc/297037>.
@article{Keskin2021,
abstract = {The sequence of balancing numbers $(B_\{n\})$ is defined by the recurrence relation $B_\{n\}=6B_\{n-1\}-B_\{n-2\}$ for $n\ge 2$ with initial conditions $B_\{0\}=0$ and $B_\{1\}=1.$$B_\{n\}$ is called the $n$th balancing number. In this paper, we find all repdigits in the base $b,$ which are sums of four balancing numbers. As a result of our theorem, we state that if $B_\{n\}$ is repdigit in the base $b$ and has at least two digits, then $(n,b)=(2,5),(3,6) $. Namely, $B_\{2\}=6=(11)_\{5\}$ and $B_\{3\}=35=(55)_\{6\}.$},
author = {Keskin, Refik, Erduvan, Faticko},
journal = {Mathematica Bohemica},
keywords = {balancing number; repdigit; Diophantine equations; linear form in logarithms},
language = {eng},
number = {1},
pages = {55-68},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Repdigits in the base $b$ as sums of four balancing numbers},
url = {http://eudml.org/doc/297037},
year = {2021},
}
TY - JOUR
AU - Keskin, Refik
AU - Erduvan, Faticko
TI - Repdigits in the base $b$ as sums of four balancing numbers
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 55
EP - 68
AB - The sequence of balancing numbers $(B_{n})$ is defined by the recurrence relation $B_{n}=6B_{n-1}-B_{n-2}$ for $n\ge 2$ with initial conditions $B_{0}=0$ and $B_{1}=1.$$B_{n}$ is called the $n$th balancing number. In this paper, we find all repdigits in the base $b,$ which are sums of four balancing numbers. As a result of our theorem, we state that if $B_{n}$ is repdigit in the base $b$ and has at least two digits, then $(n,b)=(2,5),(3,6) $. Namely, $B_{2}=6=(11)_{5}$ and $B_{3}=35=(55)_{6}.$
LA - eng
KW - balancing number; repdigit; Diophantine equations; linear form in logarithms
UR - http://eudml.org/doc/297037
ER -
References
top- Weger, B. M. M. de, Algorithms for Diophantine Equations, CWI Tract 65. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam (1989). (1989) Zbl0687.10013MR1026936
- Alvarado, S. Díaz, Luca, F., Fibonacci numbers which are sums of two repdigits, Proc. 14th Int. Conf. Fibonacci Numbers and their Applications. Morelia, 2010 Aportaciones Mat. Investig. 20. Soc. Mat. Mexicana, México (2011), 97-108 F. Luca et al. (2011) Zbl1287.11021MR3243271
- Faye, B., Luca, F., Pell and Pell-Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55-60. (2015) Zbl1349.11023MR3438812
- Luca, F., Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243-254. (2000) Zbl0958.11007MR1759818
- Luca, F., Repdigits as sums of three Fibonacci numbers, Math. Commun. 17 (2012), 1-11. (2012) Zbl1305.11008MR2946127
- Luca, F., Normenyo, B. V., Togbe, A., 10.1007/s40590-018-0202-1, Bol. Soc. Mat. Mex., III. Ser. 25 (2019), 249-266. (2019) Zbl07089380MR3964309DOI10.1007/s40590-018-0202-1
- Keskin, R., Karaatlı, O., Some new properties of balancing numbers and square triangular numbers, J. Integer Seq. 15 (2012), Article 12.1.4, 13 pages. (2012) Zbl1291.11030MR2872461
- Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
- Normenyo, B. V., Luca, F., Togbé, A., 10.1007/s10998-018-0247-y, Period. Math. Hung. 77 (2018), 318-328. (2018) Zbl07011043MR3866634DOI10.1007/s10998-018-0247-y
- Panda, G. K., Some fascinating properties of balancing numbers, Cong. Numerantium 194 (2009), 185-189. (2009) Zbl1262.11019MR2463534
- Panda, G. K., Ray, P. K., 10.1155/IJMMS.2005.1189, Int. J. Math. Math. Sci. 2005 (2005), 1189-1200. (2005) Zbl1085.11017MR2176762DOI10.1155/IJMMS.2005.1189
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.