Derived equivalences between generalized matrix algebras
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 147-160
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, QingHua, and Liu, HongJin. "Derived equivalences between generalized matrix algebras." Czechoslovak Mathematical Journal 70.1 (2020): 147-160. <http://eudml.org/doc/297038>.
@article{Chen2020,
abstract = {We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.},
author = {Chen, QingHua, Liu, HongJin},
journal = {Czechoslovak Mathematical Journal},
keywords = {derived equivalence; tilting complex; generalized matrix algebra},
language = {eng},
number = {1},
pages = {147-160},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Derived equivalences between generalized matrix algebras},
url = {http://eudml.org/doc/297038},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Chen, QingHua
AU - Liu, HongJin
TI - Derived equivalences between generalized matrix algebras
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 147
EP - 160
AB - We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.
LA - eng
KW - derived equivalence; tilting complex; generalized matrix algebra
UR - http://eudml.org/doc/297038
ER -
References
top- Asashiba, H., 10.1006/jabr.1997.6906, J. Algebra 191 (1997), 382-415. (1997) Zbl0871.16006MR1444505DOI10.1006/jabr.1997.6906
- Assem, I., Brüstle, T., Schiffler, R., Todorov, G., 10.1016/j.jalgebra.2005.12.002, J. Algebra 305 (2006), 548-561. (2006) Zbl1114.16010MR2264143DOI10.1016/j.jalgebra.2005.12.002
- Assem, I., Brüstle, T., Schiffler, R., Todorov, G., 10.1016/j.jpaa.2007.07.013, J. Pure Appl. Algebra 212 (2008), 884-901. (2008) Zbl1143.16015MR2363499DOI10.1016/j.jpaa.2007.07.013
- Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Enochs, E., Torrecillas, B., 10.1515/FORM.2011.021, Forum Math. 23 (2011), 611-624. (2011) Zbl1227.16002MR2805196DOI10.1515/FORM.2011.021
- Gao, N., Psaroudakis, C., 10.1007/s10468-016-9652-1, Algebr. Represent. Theory 20 (2017), 487-529. (2017) Zbl1382.16008MR3638357DOI10.1007/s10468-016-9652-1
- Green, E. L., 10.2140/pjm.1982.100.123, Pac. J. Math. 100 (1982), 123-138. (1982) Zbl0502.16016MR0661444DOI10.2140/pjm.1982.100.123
- Green, E. L., Psaroudakis, C., 10.1007/s10468-013-9457-4, Algebr. Represent. Theory 17 (2014), 1485-1525. (2014) Zbl1317.16003MR3260907DOI10.1007/s10468-013-9457-4
- Happel, D., Seidel, U., 10.1007/s10468-009-9169-y, Algebr. Represent. Theory 13 (2010), 693-704. (2010) Zbl1217.16015MR2736030DOI10.1007/s10468-009-9169-y
- Herscovich, E., Solotar, A., 10.1016/j.jalgebra.2007.05.014, J. Algebra 315 (2007), 852-873. (2007) Zbl1184.18013MR2351897DOI10.1016/j.jalgebra.2007.05.014
- Iversen, B., 10.1007/978-3-642-82783-9, Universitext, Springer, Berlin (1986). (1986) Zbl1272.55001MR0842190DOI10.1007/978-3-642-82783-9
- Ladkani, S., 10.1112/jlms/jds034, J. Lond. Math. Soc., II. Ser. 87 (2013), 157-176. (2013) Zbl1284.16008MR3022711DOI10.1112/jlms/jds034
- Li, L., 10.1080/00927872.2013.879157, Commun. Algebra 43 (2015), 1723-1741. (2015) Zbl1360.18003MR3316816DOI10.1080/00927872.2013.879157
- Li, L., 10.1080/00927872.2017.1327051, Commun. Algebra 46 (2018), 615-628. (2018) Zbl06875436MR3764883DOI10.1080/00927872.2017.1327051
- Miličić, D., Lectures on Derived Categories, Available at http://www.math.utah.edu/ {milicic/Eprints/dercat.pdf}.
- Miyachi, J.-I., 10.1016/0022-4049(94)00145-6, J. Pure Appl. Algebra 105 (1995), 183-194. (1995) Zbl0846.16005MR1365875DOI10.1016/0022-4049(94)00145-6
- Rickard, J., 10.1016/0022-4049(89)90081-9, J. Pure Appl. Algebra 61 (1989), 303-317. (1989) Zbl0685.16016MR1027750DOI10.1016/0022-4049(89)90081-9
- Rickard, J., 10.1112/jlms/s2-39.3.436, J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. (1989) Zbl0642.16034MR1002456DOI10.1112/jlms/s2-39.3.436
- Rickard, J., 10.1112/jlms/s2-43.1.37, J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. (1991) Zbl0683.16030MR1099084DOI10.1112/jlms/s2-43.1.37
- Xi, C., 10.1007/s11464-016-0593-0, Front. Math. China 12 (2017), 1-18. (2017) Zbl1396.18010MR3569663DOI10.1007/s11464-016-0593-0
- Zhang, S., 10.1016/j.jalgebra.2010.02.002, J. Algebra 323 (2010), 2538-2546. (2010) Zbl1242.16015MR2602394DOI10.1016/j.jalgebra.2010.02.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.