Derived equivalences between generalized matrix algebras

QingHua Chen; HongJin Liu

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 147-160
  • ISSN: 0011-4642

Abstract

top
We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the n -replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.

How to cite

top

Chen, QingHua, and Liu, HongJin. "Derived equivalences between generalized matrix algebras." Czechoslovak Mathematical Journal 70.1 (2020): 147-160. <http://eudml.org/doc/297038>.

@article{Chen2020,
abstract = {We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.},
author = {Chen, QingHua, Liu, HongJin},
journal = {Czechoslovak Mathematical Journal},
keywords = {derived equivalence; tilting complex; generalized matrix algebra},
language = {eng},
number = {1},
pages = {147-160},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Derived equivalences between generalized matrix algebras},
url = {http://eudml.org/doc/297038},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Chen, QingHua
AU - Liu, HongJin
TI - Derived equivalences between generalized matrix algebras
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 147
EP - 160
AB - We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent.
LA - eng
KW - derived equivalence; tilting complex; generalized matrix algebra
UR - http://eudml.org/doc/297038
ER -

References

top
  1. Asashiba, H., 10.1006/jabr.1997.6906, J. Algebra 191 (1997), 382-415. (1997) Zbl0871.16006MR1444505DOI10.1006/jabr.1997.6906
  2. Assem, I., Brüstle, T., Schiffler, R., Todorov, G., 10.1016/j.jalgebra.2005.12.002, J. Algebra 305 (2006), 548-561. (2006) Zbl1114.16010MR2264143DOI10.1016/j.jalgebra.2005.12.002
  3. Assem, I., Brüstle, T., Schiffler, R., Todorov, G., 10.1016/j.jpaa.2007.07.013, J. Pure Appl. Algebra 212 (2008), 884-901. (2008) Zbl1143.16015MR2363499DOI10.1016/j.jpaa.2007.07.013
  4. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  5. Enochs, E., Torrecillas, B., 10.1515/FORM.2011.021, Forum Math. 23 (2011), 611-624. (2011) Zbl1227.16002MR2805196DOI10.1515/FORM.2011.021
  6. Gao, N., Psaroudakis, C., 10.1007/s10468-016-9652-1, Algebr. Represent. Theory 20 (2017), 487-529. (2017) Zbl1382.16008MR3638357DOI10.1007/s10468-016-9652-1
  7. Green, E. L., 10.2140/pjm.1982.100.123, Pac. J. Math. 100 (1982), 123-138. (1982) Zbl0502.16016MR0661444DOI10.2140/pjm.1982.100.123
  8. Green, E. L., Psaroudakis, C., 10.1007/s10468-013-9457-4, Algebr. Represent. Theory 17 (2014), 1485-1525. (2014) Zbl1317.16003MR3260907DOI10.1007/s10468-013-9457-4
  9. Happel, D., Seidel, U., 10.1007/s10468-009-9169-y, Algebr. Represent. Theory 13 (2010), 693-704. (2010) Zbl1217.16015MR2736030DOI10.1007/s10468-009-9169-y
  10. Herscovich, E., Solotar, A., 10.1016/j.jalgebra.2007.05.014, J. Algebra 315 (2007), 852-873. (2007) Zbl1184.18013MR2351897DOI10.1016/j.jalgebra.2007.05.014
  11. Iversen, B., 10.1007/978-3-642-82783-9, Universitext, Springer, Berlin (1986). (1986) Zbl1272.55001MR0842190DOI10.1007/978-3-642-82783-9
  12. Ladkani, S., 10.1112/jlms/jds034, J. Lond. Math. Soc., II. Ser. 87 (2013), 157-176. (2013) Zbl1284.16008MR3022711DOI10.1112/jlms/jds034
  13. Li, L., 10.1080/00927872.2013.879157, Commun. Algebra 43 (2015), 1723-1741. (2015) Zbl1360.18003MR3316816DOI10.1080/00927872.2013.879157
  14. Li, L., 10.1080/00927872.2017.1327051, Commun. Algebra 46 (2018), 615-628. (2018) Zbl06875436MR3764883DOI10.1080/00927872.2017.1327051
  15. Miličić, D., Lectures on Derived Categories, Available at http://www.math.utah.edu/ {milicic/Eprints/dercat.pdf}. 
  16. Miyachi, J.-I., 10.1016/0022-4049(94)00145-6, J. Pure Appl. Algebra 105 (1995), 183-194. (1995) Zbl0846.16005MR1365875DOI10.1016/0022-4049(94)00145-6
  17. Rickard, J., 10.1016/0022-4049(89)90081-9, J. Pure Appl. Algebra 61 (1989), 303-317. (1989) Zbl0685.16016MR1027750DOI10.1016/0022-4049(89)90081-9
  18. Rickard, J., 10.1112/jlms/s2-39.3.436, J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. (1989) Zbl0642.16034MR1002456DOI10.1112/jlms/s2-39.3.436
  19. Rickard, J., 10.1112/jlms/s2-43.1.37, J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. (1991) Zbl0683.16030MR1099084DOI10.1112/jlms/s2-43.1.37
  20. Xi, C., 10.1007/s11464-016-0593-0, Front. Math. China 12 (2017), 1-18. (2017) Zbl1396.18010MR3569663DOI10.1007/s11464-016-0593-0
  21. Zhang, S., 10.1016/j.jalgebra.2010.02.002, J. Algebra 323 (2010), 2538-2546. (2010) Zbl1242.16015MR2602394DOI10.1016/j.jalgebra.2010.02.002

NotesEmbed ?

top

You must be logged in to post comments.