Variable exponent Fock spaces
Gerardo R. Chacón; Gerardo A. Chacón
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 187-204
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChacón, Gerardo R., and Chacón, Gerardo A.. "Variable exponent Fock spaces." Czechoslovak Mathematical Journal 70.1 (2020): 187-204. <http://eudml.org/doc/297045>.
@article{Chacón2020,
abstract = {We introduce variable exponent Fock spaces and study some of their basic properties such as boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality. We also prove that under the global log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones.},
author = {Chacón, Gerardo R., Chacón, Gerardo A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fock space; variable exponent Lebesgue space; Bergman projection},
language = {eng},
number = {1},
pages = {187-204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variable exponent Fock spaces},
url = {http://eudml.org/doc/297045},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Chacón, Gerardo R.
AU - Chacón, Gerardo A.
TI - Variable exponent Fock spaces
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 187
EP - 204
AB - We introduce variable exponent Fock spaces and study some of their basic properties such as boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality. We also prove that under the global log-Hölder condition, the variable exponent Fock spaces coincide with the classical ones.
LA - eng
KW - Fock space; variable exponent Lebesgue space; Bergman projection
UR - http://eudml.org/doc/297045
ER -
References
top- Chacón, G. R., Rafeiro, H., 10.1016/j.na.2014.04.001, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. (2014) Zbl1288.30059MR3200739DOI10.1016/j.na.2014.04.001
- Chacón, G. R., Rafeiro, H., 10.1007/s00009-016-0701-0, Mediterr. J. Math. 13 (2016), 3525-3536. (2016) Zbl1354.30049MR3554324DOI10.1007/s00009-016-0701-0
- Chacón, G. R., Rafeiro, H., Vallejo, J. C., 10.1007/s11785-016-0573-0, Complex Anal. Oper. Theory 11 (2017), 1623-1638. (2017) Zbl1387.30081MR3702967DOI10.1007/s11785-016-0573-0
- Cruz-Uribe, D. V., Fiorenza, A., 10.1007/978-3-0348-0548-3, Applied and Numerical Harmonic Analysis, Birkhäuser, Basel (2013). (2013) Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017, Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- Harjulehto, P., Hästö, P., Klén, R., 10.1016/j.na.2016.05.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 143 (2016), 155-173. (2016) Zbl1360.46029MR3516828DOI10.1016/j.na.2016.05.002
- Isralowitz, J., 10.7900/jot.2012apr10.1989, J. Oper. Theory 71 (2014), 381-410. (2014) Zbl1313.47059MR3214643DOI10.7900/jot.2012apr10.1989
- Karapetyants, A., Samko, S., 10.1515/GMJ.2010.028, Georgian Math. J. 17 (2010), 529-542. (2010) Zbl1201.30072MR2719633DOI10.1515/GMJ.2010.028
- Karapetyants, A. N., Samko, S. G., 10.1134/S000143461607004X, Math. Notes 100 (2016), 38-48 translation from Mat. Zametki 100 2016 47-58. (2016) Zbl1364.30063MR3588827DOI10.1134/S000143461607004X
- Karapetyants, A. N., Samko, S. G., 10.1080/17476933.2016.1140750, Complex Var. Elliptic Equ. 61 (2016), 1090-1106. (2016) Zbl1351.30042MR3500518DOI10.1080/17476933.2016.1140750
- Kokilashvili, V., Paatashvili, V., On Hardy classes of analytic functions with a variable exponent, Proc. A. Razmadze Math. Inst. 142 (2006), 134-137. (2006) Zbl1126.47031MR2294576
- Kokilashvili, V., Paatashvili, V., On the convergence of sequences of functions in Hardy classes with a variable exponent, Proc. A. Razmadze Math. Inst. 146 (2008), 124-126. (2008) Zbl1166.47033MR2464049
- Kováčik, O., Rákosník, J., 10.21136/CMJ.1991.102493, Czech. Math. J. 41 (1991), 592-618. (1991) Zbl0784.46029MR1134951DOI10.21136/CMJ.1991.102493
- Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L., 10.1090/S0065-9266-10-00580-6, Mem. Am. Math. Soc. 207 (2010), 74 pages. (2010) Zbl1200.47035MR2681410DOI10.1090/S0065-9266-10-00580-6
- Lefèvre, P., Li, D., Queffélec, H., Rodríguez-Piazza, L., 10.1090/S0002-9947-2013-05922-3, Trans. Am. Math. Soc. 365 (2013), 3943-3970. (2013) Zbl1282.47033MR3055685DOI10.1090/S0002-9947-2013-05922-3
- Motos, J., Planells, M. J., Talavera, C. F., 10.1016/j.jmaa.2011.09.069, J. Math. Anal. Appl. 388 (2012), 775-787. (2012) Zbl1244.46008MR2869787DOI10.1016/j.jmaa.2011.09.069
- Orlicz, W., 10.4064/sm-3-1-200-211, Stud. Math. 3 (1931), 200-211 German. (1931) Zbl0003.25203DOI10.4064/sm-3-1-200-211
- Tung, Y.-C. J., Fock Spaces, Ph.D. Thesis, The University of Michigan (2005). (2005) MR2706955
- Zhu, K., 10.1007/978-1-4419-8801-0, Graduate Texts in Mathematics 263, Springer, New York (2012). (2012) Zbl1262.30003MR2934601DOI10.1007/978-1-4419-8801-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.