Periodic solutions of nonlinear differential systems by the method of averaging
Zhanyong Li; Qihuai Liu; Kelei Zhang
Applications of Mathematics (2020)
- Volume: 65, Issue: 4, page 511-542
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLi, Zhanyong, Liu, Qihuai, and Zhang, Kelei. "Periodic solutions of nonlinear differential systems by the method of averaging." Applications of Mathematics 65.4 (2020): 511-542. <http://eudml.org/doc/297048>.
@article{Li2020,
abstract = {In many engineering problems, when studying the existence of periodic solutions to a nonlinear system with a small parameter via the local averaging theorem, it is necessary to verify some properties of the fundamental solution matrix to the corresponding linearized system along the periodic solution of the unperturbed system. But sometimes, it is difficult or it requires a lot of calculations. In this paper, a few simple and effective methods are introduced to investigate the existence of periodic solutions for a kind of small parametric systems. In order to prove the existence of periodic solutions by these ideas, we also introduce a forced autoparametric vibrating system and a generalized model of the tuned mass absorber with pendulum discussed by Brzeski, Perlikowski, and Kapitaniak. Then, we also propose an averaging method to study the existence of periodic solutions.},
author = {Li, Zhanyong, Liu, Qihuai, Zhang, Kelei},
journal = {Applications of Mathematics},
keywords = {periodic solution; local averaging theorem; forced autoparametric vibrating system; tuned mass absorber},
language = {eng},
number = {4},
pages = {511-542},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions of nonlinear differential systems by the method of averaging},
url = {http://eudml.org/doc/297048},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Li, Zhanyong
AU - Liu, Qihuai
AU - Zhang, Kelei
TI - Periodic solutions of nonlinear differential systems by the method of averaging
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 511
EP - 542
AB - In many engineering problems, when studying the existence of periodic solutions to a nonlinear system with a small parameter via the local averaging theorem, it is necessary to verify some properties of the fundamental solution matrix to the corresponding linearized system along the periodic solution of the unperturbed system. But sometimes, it is difficult or it requires a lot of calculations. In this paper, a few simple and effective methods are introduced to investigate the existence of periodic solutions for a kind of small parametric systems. In order to prove the existence of periodic solutions by these ideas, we also introduce a forced autoparametric vibrating system and a generalized model of the tuned mass absorber with pendulum discussed by Brzeski, Perlikowski, and Kapitaniak. Then, we also propose an averaging method to study the existence of periodic solutions.
LA - eng
KW - periodic solution; local averaging theorem; forced autoparametric vibrating system; tuned mass absorber
UR - http://eudml.org/doc/297048
ER -
References
top- Bajaj, A. K., Chang, S. I., Johnson, J. M., 10.1007/bf00052453, Nonlinear Dyn. 5 (1994), 433-457. (1994) DOI10.1007/bf00052453
- Brzeski, P., Karmazyn, A., Perlikowski, P., Synchronization of two forced double-well Duffing oscillators with attached pendulums, J. Theor. Appl. Mech. 51 (2013), 603-613. (2013)
- Brzeski, P., Perlikowski, P., Kapitaniak, T., 10.1016/j.cnsns.2013.06.001, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 298-310. (2014) Zbl1344.70009MR3142467DOI10.1016/j.cnsns.2013.06.001
- Buică, A., Françoise, J.-P., Llibre, J., 10.3934/cpaa.2007.6.103, Commun. Pure Appl. Anal. 6 (2007), 103-111. (2007) Zbl1139.34036MR2276332DOI10.3934/cpaa.2007.6.103
- Buică, A., Giné, J., Llibre, J., 10.1016/j.physd.2011.11.007, Physica D 241 (2012), 528-533. (2012) Zbl1247.34060MR2878933DOI10.1016/j.physd.2011.11.007
- Bustos, M. T. de, López, M. A., Martínez, R., 10.1007/s11071-013-1176-1, Nonlinear Dyn. 76 (2014), 893-903. (2014) Zbl1306.34071MR3192186DOI10.1007/s11071-013-1176-1
- Euzébio, R. D., Llibre, J., 10.3934/dcds.2014.34.3455, Discrete Contin. Dyn. Syst. 34 (2014), 3455-3469. (2014) Zbl1302.86010MR3190988DOI10.3934/dcds.2014.34.3455
- Gus'kov, A. M., Panovko, G. Ya., Bin, C. V., 10.3103/s105261880804002x, J. Mach. Manuf. Reliab. 37 (2008), 321-329. (2008) DOI10.3103/s105261880804002x
- Hatwal, H., Mallik, A. K., Ghosh, A., 10.1016/0022-460X(82)90201-2, J. Sound Vib. 81 (1982), 153-164. (1982) Zbl0483.70018MR0650937DOI10.1016/0022-460X(82)90201-2
- Hatwal, H., Mallik, A. K., Ghosh, A., 10.1115/1.3167106, J. Appl. Mech. 50 (1983), 657-662. (1983) Zbl0537.70024DOI10.1115/1.3167106
- Hatwal, H., Mallik, A. K., Ghosh, A., 10.1115/1.3167107, J. Appl. Mech. 50 (1983), 663-668. (1983) Zbl0537.70025DOI10.1115/1.3167107
- Huang, R., Chu, D., 10.1137/140995702, SIAM J. Matrix Anal. Appl. 36 (2015), 476-495. (2015) Zbl1328.65089MR3340200DOI10.1137/140995702
- Lembarki, F. E., Llibre, J., 10.1007/s11071-014-1249-9, Nonlinear Dyn. 76 (2014), 1807-1819. (2014) Zbl1314.70032MR3192700DOI10.1007/s11071-014-1249-9
- Li, Z., Liu, Q., Zhang, K., 10.1088/1742-6596/1053/1/012088, J. Phys., Conf. Ser. 1053 (2018), Article ID 012088. (2018) DOI10.1088/1742-6596/1053/1/012088
- Liu, Q., Cai, L., 10.1016/j.nonrwa.2018.07.019, Nonlinear Anal., Real World Appl. 45 (2019), 461-471. (2019) Zbl07030113MR3854316DOI10.1016/j.nonrwa.2018.07.019
- Liu, Q., Qian, D., 10.1063/1.3623415, J. Math. Phys. 52 (2011), Article ID 082702, 11 pages. (2011) Zbl1272.82025MR2858048DOI10.1063/1.3623415
- Liu, Q., Qian, D., 10.1142/S1402925112500179, J. Nonlinear Math. Phys. 19 (2012), 255-268. (2012) Zbl1254.35209MR2949250DOI10.1142/S1402925112500179
- Liu, Q., Xing, M., Li, X., Wang, C., 10.1088/1674-1056/24/12/120401, Chin. Phys. B 24 (2015), 246-252. (2015) DOI10.1088/1674-1056/24/12/120401
- Llibre, J., Moeckel, R., Simó, C., 10.1007/978-3-0348-0933-7, Advanced Courses in Mathematics, CRM Barcelona. Birkhäuser/Springer, Basel (2015). (2015) Zbl1336.37002MR3381578DOI10.1007/978-3-0348-0933-7
- Llibre, J., Świrszcz, G., On the limit cycles of polynomial vector fields, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 203-214. (2011) Zbl1223.34039MR2768130
- Llibre, J., Yu, J., Zhang, X., 10.1216/RMJ-2010-40-2-581, Rocky Mt. J. Math. 40 (2010), 581-594. (2010) Zbl1196.37087MR2646459DOI10.1216/RMJ-2010-40-2-581
- Llibre, J., Zhang, X., 10.1016/j.nonrwa.2010.10.019, Nonlinear Anal., Real World Appl. 12 (2011), 1650-1653. (2011) Zbl1220.34070MR2781884DOI10.1016/j.nonrwa.2010.10.019
- Rabanal, R., 10.1016/j.na.2013.10.013, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95 (2014), 676-690. (2014) Zbl1297.34046MR3130553DOI10.1016/j.na.2013.10.013
- Verhulst, F., 10.1007/978-3-642-61453-8, Universitext. Springer, Berlin (1996). (1996) Zbl0854.34002MR1422255DOI10.1007/978-3-642-61453-8
- Vyas, A., Bajaj, A. K., 10.1006/jsvi.2001.3616, J. Sound Vib. 246 (2001), 115-135. (2001) Zbl1237.70118MR1895251DOI10.1006/jsvi.2001.3616
- Vyas, A., Bajaj, A. K., Raman, A., 10.1098/rspa.2003.1204, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460 (2004), 1547-1581. (2004) Zbl1108.70307MR2067554DOI10.1098/rspa.2003.1204
- Wang, G., Zhou, Z., Zhu, S., Wang, S., Ordinary Differential Equations, Higher Education Press, Beijing (2006), Chinese. (2006)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.