Tropical probability theory and an application to the entropic cone

Rostislav Matveev; Jacobus W. Portegies

Kybernetika (2020)

  • Volume: 56, Issue: 6, page 1133-1153
  • ISSN: 0023-5954

Abstract

top
In a series of articles, we have been developing a theory of tropical diagrams of probability spaces, expecting it to be useful for information optimization problems in information theory and artificial intelligence. In this article, we give a summary of our work so far and apply the theory to derive a dimension-reduction statement about the shape of the entropic cone.

How to cite

top

Matveev, Rostislav, and Portegies, Jacobus W.. "Tropical probability theory and an application to the entropic cone." Kybernetika 56.6 (2020): 1133-1153. <http://eudml.org/doc/297051>.

@article{Matveev2020,
abstract = {In a series of articles, we have been developing a theory of tropical diagrams of probability spaces, expecting it to be useful for information optimization problems in information theory and artificial intelligence. In this article, we give a summary of our work so far and apply the theory to derive a dimension-reduction statement about the shape of the entropic cone.},
author = {Matveev, Rostislav, Portegies, Jacobus W.},
journal = {Kybernetika},
keywords = {tropical probability; entropic cone; non-Shannon inequality},
language = {eng},
number = {6},
pages = {1133-1153},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Tropical probability theory and an application to the entropic cone},
url = {http://eudml.org/doc/297051},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Matveev, Rostislav
AU - Portegies, Jacobus W.
TI - Tropical probability theory and an application to the entropic cone
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 6
SP - 1133
EP - 1153
AB - In a series of articles, we have been developing a theory of tropical diagrams of probability spaces, expecting it to be useful for information optimization problems in information theory and artificial intelligence. In this article, we give a summary of our work so far and apply the theory to derive a dimension-reduction statement about the shape of the entropic cone.
LA - eng
KW - tropical probability; entropic cone; non-Shannon inequality
UR - http://eudml.org/doc/297051
ER -

References

top
  1. Ahlswede, R., Körner, J., On common information and related characteristics of correlated information sources., Preprint, 7th Prague Conference on Information Theory, 1974. MR2495193
  2. Ahlswede, R., Körner, J., On common information and related characteristics of correlated information sources., In: General Theory of Information Transfer and Combinatorics (R. Ahlswede et al., eds.), Lecture Notes in Computer Science 4123, Springer, Berlin, Heidelberg, 2006. MR2495193
  3. Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N., 10.3390/e16042161, Entropy 16 (2014), 4, 2161-2183. MR3195286DOI10.3390/e16042161
  4. Chan, T. H., Yeung, R. W, 10.1109/tit.2002.1013138, IEEE Trans. Inform. Theory 48 (2002), 7, 1992-1995. MR1930005DOI10.1109/tit.2002.1013138
  5. Dougherty, R., Freiling, Ch., Zeger, K., 10.1109/isit.2006.261840, In: 2006 IEEE International Symposium on Information Theory, IEEE, 2006, pp. 233-236. MR2321860DOI10.1109/isit.2006.261840
  6. Dougherty, R., Freiling, Ch., Zeger, K., Non-Shannon information inequalities in four random variables., arXiv preprint arXiv:1104.3602, 2011. MR2321860
  7. Gromov, M., In a search for a structure, part 1: On entropy. 
  8. Kovačević, M., Stanojević, I., Šenk, V., 10.3390/e22040407, In: 2012 IEEE Information Theory Workshop, IEEE, 2012, pp. 512-516. DOI10.3390/e22040407
  9. Leinster, T., Basic Category Theory, volume 143. MR3307165
  10. Matúš, F., 10.1080/03081079308935205, Int. J. General System 22 (1993), 2, 185-196. DOI10.1080/03081079308935205
  11. Matúš, F., 10.1109/tit.2006.887090, IEEE Trans. Inform. Theory 53 (2006), 1, 320-330. MR2292891DOI10.1109/tit.2006.887090
  12. Matúš, F., 10.1109/isit.2007.4557201, In: IEEE International Symposium on Information Theory, ISIT 2007, IEEE, pp. 41-44. DOI10.1109/isit.2007.4557201
  13. Matúš, F., Csirmaz, L., 10.1109/tit.2016.2601598, IEEE Trans. Inform. Theory 62 (2016), 11, 6007-6018. MR3565097DOI10.1109/tit.2016.2601598
  14. Matúš, F., Studený, M., 10.1017/s0963548300001644, Combinat. Probab. Comput. 4 (1995), 3, 269-278. MR1356579DOI10.1017/s0963548300001644
  15. Makarychev, K., Makarychev, Y., Romashchenko, A., Vereshchagin, N., 10.4310/cis.2002.v2.n2.a3, Comm. Inform. Syst. 2 (2002), 2, 147-166. MR1958013DOI10.4310/cis.2002.v2.n2.a3
  16. Matveev, R., Portegies, J. W, 10.1007/s41884-018-0013-5, Inform. Geometry 1 (2018), 2, 237-285. MR4010749DOI10.1007/s41884-018-0013-5
  17. Matveev, R., Portegies, J. W., Arrow Contraction and Expansion in Tropical Diagrams., arXiv e-prints, page arXiv:1905.05597, 2019. 
  18. Matveev, R., Portegies, J. W., Conditioning in tropical probability theory., arXiv e-prints, page arXiv:1905.05596, 2019. 
  19. Matveev, R., Portegies, J. W., Tropical diagrams of probability spaces., arXiv e-prints, page arXiv:1905.04375, 2019. MR4117580
  20. Slepian, D., Wolf, J., 10.1109/tit.1973.1055037, IEEE Trans. Inform. Theory 19 (1973), 4, 471-480. MR0421858DOI10.1109/tit.1973.1055037
  21. Vidyasagar, M., 10.1109/tac.2012.2188423, IEEE Trans. Automat. Control 57 (2012), 10, 2464-2477. MR2991650DOI10.1109/tac.2012.2188423
  22. Wyner, A., 10.1109/tit.1975.1055346, IEEE Trans. Inform. Theory 21 (1975), 2, 163-179. MR0363679DOI10.1109/tit.1975.1055346
  23. Yeung, R. W., 10.1007/978-0-387-79234-7_1, Springer Science and Business Media, 2008. DOI10.1007/978-0-387-79234-7_1
  24. Zhang, Z., Yeung, R. W., 10.1109/18.641561, IEEE Trans. Inform. Theory 43 (1997), 6, 1982-1986. MR1481054DOI10.1109/18.641561
  25. Zhang, Z., Yeung, R. W., 10.1109/18.681320, IEEE Trans. Inform. Theory 44 (1998), 4, 1440-1452. MR1665794DOI10.1109/18.681320

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.