Polynomial expansiveness and admissibility of weighted Lebesgue spaces
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 111-136
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHai, Pham Viet. "Polynomial expansiveness and admissibility of weighted Lebesgue spaces." Czechoslovak Mathematical Journal (2021): 111-136. <http://eudml.org/doc/297054>.
@article{Hai2021,
abstract = {The paper investigates the interaction between the notions of expansiveness and admissibility. We consider a polynomially bounded discrete evolution family and define an admissibility notion via the solvability of an associated difference equation. Using the admissibility of weighted Lebesgue spaces of sequences, we give a characterization of discrete evolution families which are polynomially expansive and also those which are expansive in the ordinary sense. Thereafter, we apply the main results in order to infer continuous-time characterizations for the notions of expansiveness through the solvability of an associated integral equation.},
author = {Hai, Pham Viet},
journal = {Czechoslovak Mathematical Journal},
keywords = {polynomial expansiveness; evolution family},
language = {eng},
number = {1},
pages = {111-136},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Polynomial expansiveness and admissibility of weighted Lebesgue spaces},
url = {http://eudml.org/doc/297054},
year = {2021},
}
TY - JOUR
AU - Hai, Pham Viet
TI - Polynomial expansiveness and admissibility of weighted Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 111
EP - 136
AB - The paper investigates the interaction between the notions of expansiveness and admissibility. We consider a polynomially bounded discrete evolution family and define an admissibility notion via the solvability of an associated difference equation. Using the admissibility of weighted Lebesgue spaces of sequences, we give a characterization of discrete evolution families which are polynomially expansive and also those which are expansive in the ordinary sense. Thereafter, we apply the main results in order to infer continuous-time characterizations for the notions of expansiveness through the solvability of an associated integral equation.
LA - eng
KW - polynomial expansiveness; evolution family
UR - http://eudml.org/doc/297054
ER -
References
top- Barreira, L., Valls, C., 10.1016/j.na.2009.04.005, Nonlinear Anal., Theory Methods Appl. 71 (2009), 5208-5219. (2009) Zbl1181.34046MR2560190DOI10.1016/j.na.2009.04.005
- Bătăran, F., Preda, C., Preda, P., 10.1007/s00025-017-0666-8, Result. Math. 72 (2017), 965-978. (2017) Zbl1375.37091MR3684470DOI10.1007/s00025-017-0666-8
- Coffman, C. V., Schäffer, J. J., 10.1007/BF01350095, Math. Ann. 172 (1967), 139-166. (1967) Zbl0189.40303MR0214946DOI10.1007/BF01350095
- Daletskij, Ju. L., Krejn, M. G., 10.1090/mmono/043, Translations of Mathematical Monographs 43. American Mathematical Society, Providence (1974). (1974) Zbl0286.34094MR0352639DOI10.1090/mmono/043
- Hai, P. V., 10.1080/00036811.2015.1058364, Appl. Anal. 95 (2016), 1239-1255. (2016) Zbl1343.34143MR3479001DOI10.1080/00036811.2015.1058364
- Hai, P. V., 10.36045/bbms/1561687567, Bull. Belg. Math. Soc.---Simon Stevin 26 (2019), 299-314. (2019) Zbl07094830MR3975830DOI10.36045/bbms/1561687567
- Levitan, B. M., Zhikov, V. V., Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge (1982). (1982) Zbl0499.43005MR0690064
- Li, T., 10.1007/BF02547352, Acta Math. 63 (1934), 99-141 German 9999JFM99999 60.0397.03. (1934) MR1555392DOI10.1007/BF02547352
- Massera, J. L., Schäffer, J. J., Linear Differential Equations and Function Spaces, Pure and Applied Mathematics 21. Academic Press, New York (1966). (1966) Zbl0243.34107MR0212324
- Megan, M., Sasu, A. L., Sasu, B., 10.36045/bbms/1047309409, Bull. Belg. Math. Soc.---Simon Stevin 10 (2003), 1-21. (2003) Zbl1045.34022MR2032321DOI10.36045/bbms/1047309409
- Megan, M., Sasu, B., Sasu, A. L., 10.1007/s10587-004-6422-8, Czech. Math. J. 54 (2004), 739-749. (2004) Zbl1080.34546MR2086730DOI10.1007/s10587-004-6422-8
- Minh, N. V., Räbiger, F., Schnaubelt, R., 10.1007/BF01203774, Integral Equations Oper. Theory 32 (1998), 332-353. (1998) Zbl0977.34056MR1652689DOI10.1007/BF01203774
- Perron, O., 10.1007/BF01194662, Math. Z. 32 (1930), 703-728 German 9999JFM99999 56.1040.01. (1930) MR1545194DOI10.1007/BF01194662
- Popa, I.-L., Ceauşu, T., Megan, M., 10.1016/j.amc.2014.09.051, Appl. Math. Comput. 247 (2014), 969-975. (2014) Zbl1338.34101MR3270899DOI10.1016/j.amc.2014.09.051
- Popa, I.-L., Megan, M., Ceauşu, T., 10.2298/AADM120319008P, Appl. Anal. Discrete Math. 6 (2012), 140-155. (2012) Zbl1289.39030MR2952610DOI10.2298/AADM120319008P
- Preda, C., Preda, P., Petre, A.-P., On the uniform exponential stability of linear skew-product three-parameter semiflows, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 269-279. (2011) Zbl1274.34174MR2856303
- Sasu, B., 10.1016/j.jmaa.2006.04.024, J. Math. Anal. Appl. 327 (2007), 287-297. (2007) Zbl1115.39005MR2277412DOI10.1016/j.jmaa.2006.04.024
- Slyusarchuk, V. E., Instability of difference equations with respect to the first approximation, Differ. Uravn. 22 (1986), 722-723 Russian. (1986) Zbl0606.39003MR0843238
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.