Drinfeld doubles via derived Hall algebras and Bridgeland's Hall algebras

Fan Xu; Haicheng Zhang

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 253-267
  • ISSN: 0011-4642

Abstract

top
Let 𝒜 be a finitary hereditary abelian category. We give a Hall algebra presentation of Kashaev’s theorem on the relation between Drinfeld double and Heisenberg double. As applications, we obtain realizations of the Drinfeld double Hall algebra of 𝒜 via its derived Hall algebra and Bridgeland’s Hall algebra of m -cyclic complexes.

How to cite

top

Xu, Fan, and Zhang, Haicheng. "Drinfeld doubles via derived Hall algebras and Bridgeland's Hall algebras." Czechoslovak Mathematical Journal (2021): 253-267. <http://eudml.org/doc/297067>.

@article{Xu2021,
abstract = {Let $\{\mathcal \{A\}\}$ be a finitary hereditary abelian category. We give a Hall algebra presentation of Kashaev’s theorem on the relation between Drinfeld double and Heisenberg double. As applications, we obtain realizations of the Drinfeld double Hall algebra of $\{\mathcal \{A\}\}$ via its derived Hall algebra and Bridgeland’s Hall algebra of $m$-cyclic complexes.},
author = {Xu, Fan, Zhang, Haicheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {Heisenberg double; Drinfeld double; derived Hall algebra; Bridgeland's Hall algebra},
language = {eng},
number = {1},
pages = {253-267},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Drinfeld doubles via derived Hall algebras and Bridgeland's Hall algebras},
url = {http://eudml.org/doc/297067},
year = {2021},
}

TY - JOUR
AU - Xu, Fan
AU - Zhang, Haicheng
TI - Drinfeld doubles via derived Hall algebras and Bridgeland's Hall algebras
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 253
EP - 267
AB - Let ${\mathcal {A}}$ be a finitary hereditary abelian category. We give a Hall algebra presentation of Kashaev’s theorem on the relation between Drinfeld double and Heisenberg double. As applications, we obtain realizations of the Drinfeld double Hall algebra of ${\mathcal {A}}$ via its derived Hall algebra and Bridgeland’s Hall algebra of $m$-cyclic complexes.
LA - eng
KW - Heisenberg double; Drinfeld double; derived Hall algebra; Bridgeland's Hall algebra
UR - http://eudml.org/doc/297067
ER -

References

top
  1. Bridgeland, T., 10.4007/annals.2013.177.2.9, Ann. Math. (2) 177 (2013), 739-759. (2013) Zbl1268.16017MR3010811DOI10.4007/annals.2013.177.2.9
  2. Chen, Q., Deng, B., 10.1016/j.jalgebra.2015.04.043, J. Algebra 440 (2015), 1-32. (2015) Zbl1328.16007MR3373385DOI10.1016/j.jalgebra.2015.04.043
  3. Green, J. A., 10.1007/BF01241133, Invent. Math. 120 (1995), 361-377. (1995) Zbl0836.16021MR1329046DOI10.1007/BF01241133
  4. Kapranov, M., 10.1007/BF02399194, J. Math. Sci., New York 84 (1997), 1311-1360. (1997) Zbl0929.11015MR1465518DOI10.1007/BF02399194
  5. Kapranov, M., 10.1006/jabr.1997.7323, J. Algebra 202 (1998), 712-744. (1998) Zbl0910.18005MR1617651DOI10.1006/jabr.1997.7323
  6. Kashaev, R. M., The Heisenberg double and the pentagon relation, St. Petersbg. Math. J. 8 (1997), 585-592 translation from Algebra Anal. 8 1996 63-74. (1997) Zbl0870.16023MR1418255
  7. Lin, J., 10.1007/s11425-017-9377-8, Sci. China, Math. 63 (2020), 671-688. (2020) Zbl07184422MR4079890DOI10.1007/s11425-017-9377-8
  8. Ringel, C. M., 10.4064/-26-1-433-447, Topics in Algebra. Part 1. Rings and Representations of Algebras Banach Center Publications 26. PWN, Warsaw (1990), 433-447. (1990) Zbl0778.16004MR1171248DOI10.4064/-26-1-433-447
  9. Ringel, C. M., 10.1007/BF01231516, Invent. Math. 101 (1990), 583-591. (1990) Zbl0735.16009MR1062796DOI10.1007/BF01231516
  10. Schiffmann, O., Lectures on Hall algebras, Geometric Methods in Representation Theory II Société Mathématique de France, Paris (2012), 1-141. (2012) Zbl1309.18012MR3202707
  11. Sheng, J., Xu, F., 10.1142/S1005386712000399, Algebra Colloq. 19 (2012), 533-538. (2012) Zbl1250.18013MR2999262DOI10.1142/S1005386712000399
  12. Toën, B., 10.1215/s0012-7094-06-13536-6, Duke Math. J. 135 (2006), 587-615. (2006) Zbl1117.18011MR2272977DOI10.1215/s0012-7094-06-13536-6
  13. Xiao, J., 10.1006/jabr.1996.6887, J. Algebra 190 (1997), 100-144. (1997) Zbl0874.16026MR1442148DOI10.1006/jabr.1996.6887
  14. Xiao, J., Xu, F., 10.1215/00127094-2008-021, Duke Math. J. 143 (2008), 357-373. (2008) Zbl1168.18006MR2420510DOI10.1215/00127094-2008-021
  15. Yanagida, S., 10.1007/s00209-015-1573-x, Math. Z. 282 (2016), 973-991. (2016) Zbl1403.16011MR3473652DOI10.1007/s00209-015-1573-x
  16. Zhang, H., 10.1080/00927872.2017.1388812, Commun. Algebra 46 (2018), 2551-2560. (2018) Zbl06900764MR3778411DOI10.1080/00927872.2017.1388812
  17. Zhang, H., 10.1142/S0219498818501049, J. Algebra Appl. 17 (2018), Article ID 1850104, 12 pages. (2018) Zbl1391.16016MR3805715DOI10.1142/S0219498818501049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.