Distributive lattices have the intersection property
Mathematica Bohemica (2021)
- Issue: 1, page 7-17
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMühle, Henri. "Distributive lattices have the intersection property." Mathematica Bohemica (2021): 7-17. <http://eudml.org/doc/297084>.
@article{Mühle2021,
abstract = {Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice.},
author = {Mühle, Henri},
journal = {Mathematica Bohemica},
keywords = {distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property},
language = {eng},
number = {1},
pages = {7-17},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Distributive lattices have the intersection property},
url = {http://eudml.org/doc/297084},
year = {2021},
}
TY - JOUR
AU - Mühle, Henri
TI - Distributive lattices have the intersection property
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 7
EP - 17
AB - Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice.
LA - eng
KW - distributive lattice; congruence-uniform lattice; canonical join complex; core label order; intersection property
UR - http://eudml.org/doc/297084
ER -
References
top- Bancroft, E., The shard intersection order on permutations, Available at https://arxiv.org/abs/1103.1910 (2011). (2011)
- Barnard, E., The canonical join complex, Electron. J. Comb. 26 (2019), Research paper P1.24, 25 pages. (2019) Zbl07032096MR3919619
- Birkhoff, G., 10.1017/S0305004100016522, Proc. Camb. Philos. Soc. 30 (1934), 115-122. (1934) Zbl0009.05501DOI10.1017/S0305004100016522
- Birkhoff, G., 10.1215/S0012-7094-37-00334-X, Duke Math. J. 3 (1937), 443-454. (1937) Zbl0017.19403MR1546000DOI10.1215/S0012-7094-37-00334-X
- Clifton, A., Dillery, P., Garver, A., 10.1007/s00012-018-0567-z, Algebra Univers. 79 (2018), Article No. 84, 29 pages. (2018) Zbl06983724MR3877464DOI10.1007/s00012-018-0567-z
- Davey, B. A., Poguntke, W., Rival, I., 10.1007/BF02485233, Algebra Univers. 5 (1975), 72-75. (1975) Zbl0313.06002MR0382103DOI10.1007/BF02485233
- Day, A., 10.4153/CJM-1979-008-x, Can. J. Math. 31 (1979), 69-78. (1979) Zbl0432.06007MR0518707DOI10.4153/CJM-1979-008-x
- Day, A., 10.1007/BF01221793, Algebra Univers. 31 (1994), 397-406. (1994) Zbl0804.06006MR1265350DOI10.1007/BF01221793
- Erné, M., Heitzig, J., Reinhold, J., On the number of distributive lattices, Electron. J. Comb. 9 (2002), Research paper R24, 23 pages. (2002) Zbl0989.05005MR1912806
- Freese, R., Ježek, J., Nation, J. B., 10.1090/surv/042, Mathematical Surveys and Monographs 42. AMS, Providence (1995). (1995) Zbl0839.06005MR1319815DOI10.1090/surv/042
- Garver, A., McConville, T., Enumerative properties of Grid-Associahedra, Available at https://arxiv.org/abs/1705.04901 (2017). (2017) MR3678643
- Garver, A., McConville, T., 10.1016/j.jcta.2018.03.014, J. Comb. Theory, Ser. A 158 (2018), 126-175. (2018) Zbl06905022MR3800125DOI10.1016/j.jcta.2018.03.014
- Grätzer, G., 10.1007/978-3-0348-7633-9, Pure and Applied Mathematics 75. Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1978). (1978) Zbl0436.06001MR0509213DOI10.1007/978-3-0348-7633-9
- Mühle, H., Noncrossing partitions, Tamari lattices, and parabolic quotients of the symmetric group, Available at https://arxiv.org/abs/1809.01405 (2018). (2018) MR4039340
- Mühle, H., 10.1007/s00012-019-0585-5, Algebra Univers. 80 (2019), Article No. 10, 22 pages. (2019) Zbl07031055MR3908324DOI10.1007/s00012-019-0585-5
- Petersen, T. K., 10.1137/110847202, SIAM J. Discrete Math. 27 (2013), 1880-1912. (2013) Zbl1296.05211MR3123822DOI10.1137/110847202
- Reading, N., 10.1007/s10801-010-0255-3, J. Algebr. Comb. 33 (2011), 483-530. (2011) Zbl1290.05163MR2781960DOI10.1007/s10801-010-0255-3
- Reading, N., 10.1137/140972391, SIAM J. Discrete Math. 29 (2015), 736-750. (2015) Zbl1314.05015MR3335492DOI10.1137/140972391
- Reading, N., 10.1007/978-3-319-44236-5_9, Lattice Theory: Special Topics and Applications. Volume 2 Birkhäuser/Springer, Basel (2016), 399-487 G. Grätzer et al. (2016) Zbl1404.06004MR3645055DOI10.1007/978-3-319-44236-5_9
- Whitman, P. M., 10.2307/1969001, Ann. Math. (2) 42 (1941), 325-330. (1941) Zbl0024.24501MR0003614DOI10.2307/1969001
- Whitman, P. M., 10.2307/1968883, Ann. Math. (2) 43 (1942), 104-115. (1942) Zbl0063.08232MR0006143DOI10.2307/1968883
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.