Brownian motion tree models are toric

Bernd Sturmfels; Caroline Uhler; Piotr Zwiernik

Kybernetika (2020)

  • Volume: 56, Issue: 6, page 1154-1175
  • ISSN: 0023-5954

Abstract

top
Felsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic characterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices.

How to cite

top

Sturmfels, Bernd, Uhler, Caroline, and Zwiernik, Piotr. "Brownian motion tree models are toric." Kybernetika 56.6 (2020): 1154-1175. <http://eudml.org/doc/297092>.

@article{Sturmfels2020,
abstract = {Felsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic characterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices.},
author = {Sturmfels, Bernd, Uhler, Caroline, Zwiernik, Piotr},
journal = {Kybernetika},
keywords = {Brownian motion tree model; ultrametric matrices; toric geometry},
language = {eng},
number = {6},
pages = {1154-1175},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Brownian motion tree models are toric},
url = {http://eudml.org/doc/297092},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Sturmfels, Bernd
AU - Uhler, Caroline
AU - Zwiernik, Piotr
TI - Brownian motion tree models are toric
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 6
SP - 1154
EP - 1175
AB - Felsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic characterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices.
LA - eng
KW - Brownian motion tree model; ultrametric matrices; toric geometry
UR - http://eudml.org/doc/297092
ER -

References

top
  1. Anderson, T. W., Estimation of covariance matrices which are linear combinations or whose inverses are linear combinations of given matrices., In: Essays in Probability and Statistics (I.|,M. Mahalanobis, P. C. Rao, C. R. Bose, R. C. Chakravarti and K. J. C. Smith, eds.), Univ. of North Carolina Press, Chapel Hill, 1970, pp. 1-24. MR0277057
  2. Bossinger, L., Fang, X., Fourier, G., Hering, M., Lanini, M., 10.1007/s00026-018-0395-z, Ann. Combinator. 22 (2018), 3, 491-512. MR3845745DOI10.1007/s00026-018-0395-z
  3. Buneman, P., The recovery of trees from measures of dissimilarity., In: Mathematics in the Archaeological and Historical Sciences (F. Hodson et al., ed.), Edinburgh University Press, 1971, pp. 387-395. 
  4. Carlson, D., Markham, T. L., 10.21136/CMJ.1979.101601, Czechosl. Math. J. 29 (1979), 2, 246-251. MR0529512DOI10.21136/CMJ.1979.101601
  5. Dellacherie, C., Martinez, S., Martin, J. San, 10.1007/978-3-319-10298-6_1, Springer 2118, 2014. MR3289211DOI10.1007/978-3-319-10298-6_1
  6. Draisma, J., Kuttler, J., 10.1007/s00208-008-0320-6, Math. Ann. 344 (2009), 3, 619-644. MR2501304DOI10.1007/s00208-008-0320-6
  7. Sullivant, J. S., Talaska, K., 10.1016/j.aam.2013.03.001, Adv. Appl. Math. 50 (2013), 5, 661-674. MR3044565DOI10.1016/j.aam.2013.03.001
  8. Felsenstein, J., Maximum-likelihood estimation of evolutionary trees from continuous characters., Amer. J. Human Genetics 25 (1973), 5, 471-492. 
  9. Grayson, D., Stillman, M., Macaulay2, a software system for research in algebraic geometry. 
  10. Kaveh, K., Manon, Ch., 10.1016/j.aam.2013.03.001, SIAM J. Appl. Algebra Geometry 3 (2019), 2, 292-336. MR3949692DOI10.1016/j.aam.2013.03.001
  11. Maclagan, D., Sturmfels, B., 10.1090/gsm/161, American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015. MR3287221DOI10.1090/gsm/161
  12. Michałek, M., Sturmfels, B., Uhler, C., Zwiernik, P., 10.1112/plms/pdv066, Proc. London Math. Soc. (3), 112 (2016), 1, 27-56. MR3458144DOI10.1112/plms/pdv066
  13. Semple, Ch., Steel, M., 10.1080/10635150490888895, Oxford University Press, 2003. MR2060009DOI10.1080/10635150490888895
  14. Moulton, V., Steel, M., 10.1016/j.aam.2004.03.003, Adv. App. Mathemat. 33 (2004), 4, 710-727. MR2095862DOI10.1016/j.aam.2004.03.003
  15. Sullivant, S., Talaska, K., Draisma, J., 10.1214/09-aos760, Ann. Stat. 38 (2010), 3, 1665-1685. MR2662356DOI10.1214/09-aos760
  16. Varga, R. S., Nabben, R., 10.1515/9783110857658.193, Numerical Linear Algebra (L. Reichel et al., eds.), de Gruyter, New York 1993, pp. 193-199. MR1244160DOI10.1515/9783110857658.193
  17. Zwiernik, P., Uhler, C., Richards, D., 10.1111/rssb.12217, J. Roy. Stat. Soc.: Series B (Stat. Method.) 79 (2017), 4, 1269-1292. MR3689318DOI10.1111/rssb.12217

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.