Brownian motion tree models are toric
Bernd Sturmfels; Caroline Uhler; Piotr Zwiernik
Kybernetika (2020)
- Volume: 56, Issue: 6, page 1154-1175
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSturmfels, Bernd, Uhler, Caroline, and Zwiernik, Piotr. "Brownian motion tree models are toric." Kybernetika 56.6 (2020): 1154-1175. <http://eudml.org/doc/297092>.
@article{Sturmfels2020,
abstract = {Felsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic characterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices.},
author = {Sturmfels, Bernd, Uhler, Caroline, Zwiernik, Piotr},
journal = {Kybernetika},
keywords = {Brownian motion tree model; ultrametric matrices; toric geometry},
language = {eng},
number = {6},
pages = {1154-1175},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Brownian motion tree models are toric},
url = {http://eudml.org/doc/297092},
volume = {56},
year = {2020},
}
TY - JOUR
AU - Sturmfels, Bernd
AU - Uhler, Caroline
AU - Zwiernik, Piotr
TI - Brownian motion tree models are toric
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 6
SP - 1154
EP - 1175
AB - Felsenstein's classical model for Gaussian distributions on a phylogenetic tree is shown to be a toric variety in the space of concentration matrices. We present an exact semialgebraic characterization of this model, and we demonstrate how the toric structure leads to exact methods for maximum likelihood estimation. Our results also give new insights into the geometry of ultrametric matrices.
LA - eng
KW - Brownian motion tree model; ultrametric matrices; toric geometry
UR - http://eudml.org/doc/297092
ER -
References
top- Anderson, T. W., Estimation of covariance matrices which are linear combinations or whose inverses are linear combinations of given matrices., In: Essays in Probability and Statistics (I.|,M. Mahalanobis, P. C. Rao, C. R. Bose, R. C. Chakravarti and K. J. C. Smith, eds.), Univ. of North Carolina Press, Chapel Hill, 1970, pp. 1-24. MR0277057
- Bossinger, L., Fang, X., Fourier, G., Hering, M., Lanini, M., 10.1007/s00026-018-0395-z, Ann. Combinator. 22 (2018), 3, 491-512. MR3845745DOI10.1007/s00026-018-0395-z
- Buneman, P., The recovery of trees from measures of dissimilarity., In: Mathematics in the Archaeological and Historical Sciences (F. Hodson et al., ed.), Edinburgh University Press, 1971, pp. 387-395.
- Carlson, D., Markham, T. L., 10.21136/CMJ.1979.101601, Czechosl. Math. J. 29 (1979), 2, 246-251. MR0529512DOI10.21136/CMJ.1979.101601
- Dellacherie, C., Martinez, S., Martin, J. San, 10.1007/978-3-319-10298-6_1, Springer 2118, 2014. MR3289211DOI10.1007/978-3-319-10298-6_1
- Draisma, J., Kuttler, J., 10.1007/s00208-008-0320-6, Math. Ann. 344 (2009), 3, 619-644. MR2501304DOI10.1007/s00208-008-0320-6
- Sullivant, J. S., Talaska, K., 10.1016/j.aam.2013.03.001, Adv. Appl. Math. 50 (2013), 5, 661-674. MR3044565DOI10.1016/j.aam.2013.03.001
- Felsenstein, J., Maximum-likelihood estimation of evolutionary trees from continuous characters., Amer. J. Human Genetics 25 (1973), 5, 471-492.
- Grayson, D., Stillman, M., Macaulay2, a software system for research in algebraic geometry.
- Kaveh, K., Manon, Ch., 10.1016/j.aam.2013.03.001, SIAM J. Appl. Algebra Geometry 3 (2019), 2, 292-336. MR3949692DOI10.1016/j.aam.2013.03.001
- Maclagan, D., Sturmfels, B., 10.1090/gsm/161, American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015. MR3287221DOI10.1090/gsm/161
- Michałek, M., Sturmfels, B., Uhler, C., Zwiernik, P., 10.1112/plms/pdv066, Proc. London Math. Soc. (3), 112 (2016), 1, 27-56. MR3458144DOI10.1112/plms/pdv066
- Semple, Ch., Steel, M., 10.1080/10635150490888895, Oxford University Press, 2003. MR2060009DOI10.1080/10635150490888895
- Moulton, V., Steel, M., 10.1016/j.aam.2004.03.003, Adv. App. Mathemat. 33 (2004), 4, 710-727. MR2095862DOI10.1016/j.aam.2004.03.003
- Sullivant, S., Talaska, K., Draisma, J., 10.1214/09-aos760, Ann. Stat. 38 (2010), 3, 1665-1685. MR2662356DOI10.1214/09-aos760
- Varga, R. S., Nabben, R., 10.1515/9783110857658.193, Numerical Linear Algebra (L. Reichel et al., eds.), de Gruyter, New York 1993, pp. 193-199. MR1244160DOI10.1515/9783110857658.193
- Zwiernik, P., Uhler, C., Richards, D., 10.1111/rssb.12217, J. Roy. Stat. Soc.: Series B (Stat. Method.) 79 (2017), 4, 1269-1292. MR3689318DOI10.1111/rssb.12217
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.