Common fixed points for four non-self mappings in partial metric spaces

Terentius Rugumisa; Santosh Kumar; Mohammad Imdad

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 1, page 45-63
  • ISSN: 0862-7959

Abstract

top
We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.

How to cite

top

Rugumisa, Terentius, Kumar, Santosh, and Imdad, Mohammad. "Common fixed points for four non-self mappings in partial metric spaces." Mathematica Bohemica 145.1 (2020): 45-63. <http://eudml.org/doc/297103>.

@article{Rugumisa2020,
abstract = {We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.},
author = {Rugumisa, Terentius, Kumar, Santosh, Imdad, Mohammad},
journal = {Mathematica Bohemica},
keywords = {common fixed point; convex partial metric space; non-self mapping},
language = {eng},
number = {1},
pages = {45-63},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Common fixed points for four non-self mappings in partial metric spaces},
url = {http://eudml.org/doc/297103},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Rugumisa, Terentius
AU - Kumar, Santosh
AU - Imdad, Mohammad
TI - Common fixed points for four non-self mappings in partial metric spaces
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 1
SP - 45
EP - 63
AB - We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.
LA - eng
KW - common fixed point; convex partial metric space; non-self mapping
UR - http://eudml.org/doc/297103
ER -

References

top
  1. Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H., 10.4169/193009709X460831, Am. Math. Mon. 116 (2009), 708-718. (2009) Zbl1229.54037MR2572106DOI10.4169/193009709X460831
  2. 'Cirić, L. B., 10.1016/j.jmaa.2005.11.025, J. Math. Anal. Appl. 317 (2006), 28-42. (2006) Zbl1089.54019MR2205309DOI10.1016/j.jmaa.2005.11.025
  3. Ćirić, L. B., Ume, J. S., Khan, M. S., Pathak, H. K., 10.1002/mana.200310028, Math. Nachr. 251 (2003), 28-33. (2003) Zbl1024.47033MR1960802DOI10.1002/mana.200310028
  4. Das, K. M., Naik, K. Viswanatha, 10.2307/2042188, Proc. Am. Math. Soc. 77 (1979), 369-373. (1979) Zbl0418.54025MR0545598DOI10.2307/2042188
  5. Gajić, L., Rakočević, V., 10.1016/j.amc.2006.09.143, Appl. Math. Comput. 187 (2007), 999-1006. (2007) Zbl1118.54304MR2323107DOI10.1016/j.amc.2006.09.143
  6. Imdad, M., Kumar, S., 10.1016/S0898-1221(03)90153-2, Comput. Math. Appl. 46 (2003), 919-927. (2003) Zbl1065.47059MR2020449DOI10.1016/S0898-1221(03)90153-2
  7. Jungck, G., 10.2307/2318216, Am. Math. Mon. 83 (1976), 261-263. (1976) Zbl0321.54025MR0400196DOI10.2307/2318216
  8. Matthews, S. G., 10.1111/j.1749-6632.1994.tb44144.x, Papers on General Topology and Applications. 8th Summer Conf. Queens College, New York, 1992 Ann. N.Y. Acad. Sci. 728. The New York Academy of Sciences, New York (1994), 183-197 S. Andima et al. (1994) Zbl0911.54025MR1467773DOI10.1111/j.1749-6632.1994.tb44144.x
  9. Taki-Eddine, O., Aliouche, A., Fixed point theorems in convex partial metric spaces, Konuralp J. Math. 2 (2014), 96-101. (2014) Zbl1306.54057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.