Common fixed points for four non-self mappings in partial metric spaces
Terentius Rugumisa; Santosh Kumar; Mohammad Imdad
Mathematica Bohemica (2020)
- Volume: 145, Issue: 1, page 45-63
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRugumisa, Terentius, Kumar, Santosh, and Imdad, Mohammad. "Common fixed points for four non-self mappings in partial metric spaces." Mathematica Bohemica 145.1 (2020): 45-63. <http://eudml.org/doc/297103>.
@article{Rugumisa2020,
abstract = {We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.},
author = {Rugumisa, Terentius, Kumar, Santosh, Imdad, Mohammad},
journal = {Mathematica Bohemica},
keywords = {common fixed point; convex partial metric space; non-self mapping},
language = {eng},
number = {1},
pages = {45-63},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Common fixed points for four non-self mappings in partial metric spaces},
url = {http://eudml.org/doc/297103},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Rugumisa, Terentius
AU - Kumar, Santosh
AU - Imdad, Mohammad
TI - Common fixed points for four non-self mappings in partial metric spaces
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 1
SP - 45
EP - 63
AB - We formulate a common fixed point theorem for four non-self mappings in convex partial metric spaces. The result extends a fixed point theorem by Gajić and Rakočević (2007) proved for two non-self mappings in metric spaces with a Takahashi convex structure. We also provide an illustrative example on the use of the theorem.
LA - eng
KW - common fixed point; convex partial metric space; non-self mapping
UR - http://eudml.org/doc/297103
ER -
References
top- Bukatin, M., Kopperman, R., Matthews, S., Pajoohesh, H., 10.4169/193009709X460831, Am. Math. Mon. 116 (2009), 708-718. (2009) Zbl1229.54037MR2572106DOI10.4169/193009709X460831
- 'Cirić, L. B., 10.1016/j.jmaa.2005.11.025, J. Math. Anal. Appl. 317 (2006), 28-42. (2006) Zbl1089.54019MR2205309DOI10.1016/j.jmaa.2005.11.025
- Ćirić, L. B., Ume, J. S., Khan, M. S., Pathak, H. K., 10.1002/mana.200310028, Math. Nachr. 251 (2003), 28-33. (2003) Zbl1024.47033MR1960802DOI10.1002/mana.200310028
- Das, K. M., Naik, K. Viswanatha, 10.2307/2042188, Proc. Am. Math. Soc. 77 (1979), 369-373. (1979) Zbl0418.54025MR0545598DOI10.2307/2042188
- Gajić, L., Rakočević, V., 10.1016/j.amc.2006.09.143, Appl. Math. Comput. 187 (2007), 999-1006. (2007) Zbl1118.54304MR2323107DOI10.1016/j.amc.2006.09.143
- Imdad, M., Kumar, S., 10.1016/S0898-1221(03)90153-2, Comput. Math. Appl. 46 (2003), 919-927. (2003) Zbl1065.47059MR2020449DOI10.1016/S0898-1221(03)90153-2
- Jungck, G., 10.2307/2318216, Am. Math. Mon. 83 (1976), 261-263. (1976) Zbl0321.54025MR0400196DOI10.2307/2318216
- Matthews, S. G., 10.1111/j.1749-6632.1994.tb44144.x, Papers on General Topology and Applications. 8th Summer Conf. Queens College, New York, 1992 Ann. N.Y. Acad. Sci. 728. The New York Academy of Sciences, New York (1994), 183-197 S. Andima et al. (1994) Zbl0911.54025MR1467773DOI10.1111/j.1749-6632.1994.tb44144.x
- Taki-Eddine, O., Aliouche, A., Fixed point theorems in convex partial metric spaces, Konuralp J. Math. 2 (2014), 96-101. (2014) Zbl1306.54057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.