On -adic Euler constants
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 283-308
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBharadwaj, Abhishek. "On $p$-adic Euler constants." Czechoslovak Mathematical Journal (2021): 283-308. <http://eudml.org/doc/297111>.
@article{Bharadwaj2021,
abstract = {The goal of this article is to associate a $p$-adic analytic function to the Euler constants $\gamma _p (a, F)$, study the properties of these functions in the neighborhood of $s=1$ and introduce a $p$-adic analogue of the infinite sum $\sum _\{n \ge 1\} f(n) / n$ for an algebraic valued, periodic function $f$. After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to $p$-adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain properties of $p$-adic Euler-Briggs constants analogous to the ones proved by Gun, Saha and Sinha.},
author = {Bharadwaj, Abhishek},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-adic Euler-Lehmer constant; linear forms in logarithms},
language = {eng},
number = {1},
pages = {283-308},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $p$-adic Euler constants},
url = {http://eudml.org/doc/297111},
year = {2021},
}
TY - JOUR
AU - Bharadwaj, Abhishek
TI - On $p$-adic Euler constants
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 283
EP - 308
AB - The goal of this article is to associate a $p$-adic analytic function to the Euler constants $\gamma _p (a, F)$, study the properties of these functions in the neighborhood of $s=1$ and introduce a $p$-adic analogue of the infinite sum $\sum _{n \ge 1} f(n) / n$ for an algebraic valued, periodic function $f$. After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to $p$-adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain properties of $p$-adic Euler-Briggs constants analogous to the ones proved by Gun, Saha and Sinha.
LA - eng
KW - $p$-adic Euler-Lehmer constant; linear forms in logarithms
UR - http://eudml.org/doc/297111
ER -
References
top- Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
- Baker, A., Birch, B. J., Wirsing, E. A., 10.1016/0022-314X(73)90048-6, J. Number Theory 5 (1973), 224-236. (1973) Zbl0267.10065MR0340203DOI10.1016/0022-314X(73)90048-6
- Bharadwaj, A. T., 10.1142/S1793042120500426, Int. J. Number Theory 16 (2020), 823-839. (2020) Zbl07205429MR4093385DOI10.1142/S1793042120500426
- Brumer, A., 10.1112/S0025579300003703, Mathematika, Lond. 14 (1967), 121-124. (1967) Zbl0171.01105MR0220694DOI10.1112/S0025579300003703
- Chatterjee, T., Gun, S., 10.4064/aa162-2-4, Acta Arith. 162 (2014), 197-208. (2014) Zbl1285.11105MR3167891DOI10.4064/aa162-2-4
- Cohen, H., 10.1007/978-0-387-49894-2, Graduate Texts in Mathematics 240. Springer, New York (2007). (2007) Zbl1119.11002MR2312338DOI10.1007/978-0-387-49894-2
- Diamond, J., 10.1090/S0002-9947-1977-0498503-9, Trans. Am. Math. Soc. 233 (1977), 321-337. (1977) Zbl0382.12008MR0498503DOI10.1090/S0002-9947-1977-0498503-9
- Gun, S., Murty, V. K., Saha, E., 10.1016/j.jnt.2016.02.004, J. Number Theory 166 (2016), 117-136. (2016) Zbl1415.11100MR3486268DOI10.1016/j.jnt.2016.02.004
- Gun, S., Saha, E., Sinha, S. B., 10.1016/j.jnt.2014.06.010, J. Number Theory 145 (2014), 329-339. (2014) Zbl1325.11071MR3253307DOI10.1016/j.jnt.2014.06.010
- Koblitz, N., 10.1090/S0002-9947-1978-0491622-3, Trans. Am. Math. Soc. 242 (1978), 261-269. (1978) Zbl0358.12010MR0491622DOI10.1090/S0002-9947-1978-0491622-3
- Kubota, T., Leopoldt, H. W., 10.1515/crll.1964.214-215.328, J. Reine Angew. Math. 214/215 (1964), 328-339 German. (1964) Zbl0186.09103MR0163900DOI10.1515/crll.1964.214-215.328
- Lang, S., 10.1007/978-1-4612-0853-2, Graduate Texts in Mathematics 110. Springer, New York (1994). (1994) Zbl0811.11001MR1282723DOI10.1007/978-1-4612-0853-2
- Lehmer, D. H., 10.4064/aa-27-1-125-142, Acta Arith. 27 (1975), 125-142. (1975) Zbl0302.12003MR0369233DOI10.4064/aa-27-1-125-142
- Morita, Y., A -adic analogue of the -function, J. Fac. Sci., Univ. Tokyo, Sect. I A 22 (1975), 255-266. (1975) Zbl0308.12003MR0424762
- Morita, Y., On the Hurwitz-Lerch -functions, J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 29-43. (1977) Zbl0356.12019MR0441924
- Murty, M. R., Saradha, N., 10.1016/j.jnt.2006.09.017, J. Number Theory 125 (2007), 298-318. (2007) Zbl1222.11097MR2332591DOI10.1016/j.jnt.2006.09.017
- Murty, M. R., Pathak, S., 10.4064/aa170615-13-3, Acta Arith. 184 (2018), 127-138. (2018) Zbl1421.11057MR3841150DOI10.4064/aa170615-13-3
- Murty, M. R., Saradha, N., 10.4064/aa133-4-4, Acta Arith. 133 (2008), 349-362. (2008) Zbl1253.11077MR2457265DOI10.4064/aa133-4-4
- Okada, T., 10.1112/jlms/s2-33.1.13, J. Lond. Math. Soc., II. Ser. 33 (1986), 13-21. (1986) Zbl0589.10034MR0829383DOI10.1112/jlms/s2-33.1.13
- Robert, A. M., 10.1007/978-1-4757-3254-2, Graduate Texts in Mathematics 198. Springer, New York (2000). (2000) Zbl0947.11035MR1760253DOI10.1007/978-1-4757-3254-2
- Washington, L. C., 10.1007/978-1-4684-0133-2, Graduate Texts in Mathematics 83. Springer, New York (1982). (1982) Zbl0484.12001MR0718674DOI10.1007/978-1-4684-0133-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.