On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums
Tran Loc Hung; Phan Tri Kien; Nguyen Tan Nhut
Kybernetika (2019)
- Volume: 55, Issue: 6, page 961-975
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHung, Tran Loc, Kien, Phan Tri, and Nhut, Nguyen Tan. "On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums." Kybernetika 55.6 (2019): 961-975. <http://eudml.org/doc/297113>.
@article{Hung2019,
abstract = {Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability metric, the rates of convergence in some weak limit theorems for geometric random sums are estimated.},
author = {Hung, Tran Loc, Kien, Phan Tri, Nhut, Nguyen Tan},
journal = {Kybernetika},
keywords = {geometric random sums; Gnedenko's transfer theorem; Zolotarev probability metric},
language = {eng},
number = {6},
pages = {961-975},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums},
url = {http://eudml.org/doc/297113},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Hung, Tran Loc
AU - Kien, Phan Tri
AU - Nhut, Nguyen Tan
TI - On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 6
SP - 961
EP - 975
AB - Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability metric, the rates of convergence in some weak limit theorems for geometric random sums are estimated.
LA - eng
KW - geometric random sums; Gnedenko's transfer theorem; Zolotarev probability metric
UR - http://eudml.org/doc/297113
ER -
References
top- S., Asmusen,, 10.1007/b97236, Springer, 2003. MR1978607DOI10.1007/b97236
- S., Asmusen,, Ruin Probabilities., World Scientific, 2010. MR1794582
- G., Bobkov, S., 10.1070/rm9749, Russian Math. Surveys 71 (2016), 6, 1021-1079. MR3588939DOI10.1070/rm9749
- L., Bon, J., Exponential Approximations of Geometric Sums for Reliability., University of Sciences at Technologies, 2002.
- L., Bon, J., Geometric Sums in reliability evaluation of regenerative systems., In: Kalashnikov Memorial Seminar 2002, pp. 161-163. MR1471479
- M., Brown,, 10.1214/aop/1176990750, Ann. Probab. 18 (1990), 3, 1388-1402. MR1062073DOI10.1214/aop/1176990750
- F., Daly,, 10.1017/jpr.2016.35, J. Appl. Prob. 53 (2016), 700-714. MR3570089DOI10.1017/jpr.2016.35
- L., Dobrushin, R., 10.4213/rm9274, Uspekhi Mat. Nauk 10 (1955), 2(64), 157-159. MR0070870DOI10.4213/rm9274
- W., Feller,, An Introduction to Probability Theory and its Applications. Volume 2., John Wiley and Son, Inc., 1966. MR0210154
- V., Gnedenko, B., G., Fahim,, On a transfer theorem., Dokl. Akad. Nauk SSSR 187 (1969), 1, 15-17. MR0251771
- V., Gnedenko, B., 10.1007/bfb0082058, Lect. Notes Math. 982 (1983), 24. MR0715458DOI10.1007/bfb0082058
- V., Gnedenko, B., Y., Korolev, V., Random Summations: Limit Theorems and Applications., CRC Press, New York 1996. MR1387113
- L., Hung, T., T., L.,, On a Probability Metric Based on Trotter Operator., Vietnam Journal of Mathematics 35:1, (2007), 21-32. MR2317431
- L., Hung, T., On the rate of convergence in limit theorems for geometric sums., Southeast-Asian J. Sci. 2 (2013), 2, 117-130.
- L., Hung, T., N., Hau, T., 10.14736/kyb-2018-5-0921, Kybernetika 54 (2018), 5, 921-936. MR3893128DOI10.14736/kyb-2018-5-0921
- V., Kalashnikov,, 10.1007/978-94-017-1693-2, Kluwer Academic Publishers, 1997. MR1471479DOI10.1007/978-94-017-1693-2
- B., Klebanov, L., M., Maniya, G., A., Melamed, I., 10.1137/1129104, Theory Probab. Appl. 29 (1084), 4, 791-794. MR0773445DOI10.1137/1129104
- B., Klebanov, L., Heavy Tailed Distributions., Research Gate, 2003.
- Y., Korolev, V., I., Zeifman, A., 10.1007/s10958-016-3032-6, J. Math. Sci. 218 (2016), 3, 314-327. MR3553138DOI10.1007/s10958-016-3032-6
- Y., Korolev, C., V., Dorofeeva, A., Estimates for the concentration functions of random sums under weakened moment conditions (in Russian., Teor. Veroyatn. Primen. 62 (2017), 1, 104-121. MR3633467
- A., I., V. Y. Korolev, Zeifman, 10.1016/j.jkss.2016.07.001, J. Korean Statist. Soc. 46 (2017), 2, 161-181. MR3648357DOI10.1016/j.jkss.2016.07.001
- S., Kotz,, J., Kozubowski, T., K., Podgórsky,, 10.1007/978-1-4612-0173-1, Springer Science and Business Media, LLC., 2001. MR1935481DOI10.1007/978-1-4612-0173-1
- M., Kruglov, V., Yu., Korolev, V., Limit Theorems for Random Sums., Moscow University Press, Moscow 1990. MR1072999
- Solym, Mawaki, Manou-Abi, 10.18642/jsata_7100121914, Research Report, HAL Archives-Ouvertes 2017. DOI10.18642/jsata_7100121914
- E., Sandhya,, N., Pillai, R., On geometric infinitely divisibility., J. Kerala Statist. Assoc. 10 (1999), 01-07.
- E., Sandhya,, N., Pillai, R., Renewal theory and geometric infinite divisibility., ProbStat. Models 2 (2003), 1-8.
- V., Petrov, V., 10.1017/s001309150002335x, Clarendon Press Oxford, 1995. MR1353441DOI10.1017/s001309150002335x
- W., Rudin,, 10.1017/s0013091500008889, Mc Graw-Hill, Inc. 1976. MR0385023DOI10.1017/s0013091500008889
- M., Zolotarev, V., 10.1070/sm1976v030n03abeh002280, Mat. Sb. (N.S.) 101(143) (1976), 3, 416-454. MR0467869DOI10.1070/sm1976v030n03abeh002280
- M., Zolotarev, V., 10.1137/1121086, Teor. Veroyatnost. i Primenen. 21 (1976), 4, 741-758. MR0517338DOI10.1137/1121086
- M., Zolotarev, V., Probability metrics., Teor. Veroyatnost. i Primenen. 28 (1983), 2, 264-287. MR0700210
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.