On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums

Tran Loc Hung; Phan Tri Kien; Nguyen Tan Nhut

Kybernetika (2019)

  • Volume: 55, Issue: 6, page 961-975
  • ISSN: 0023-5954

Abstract

top
Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability metric, the rates of convergence in some weak limit theorems for geometric random sums are estimated.

How to cite

top

Hung, Tran Loc, Kien, Phan Tri, and Nhut, Nguyen Tan. "On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums." Kybernetika 55.6 (2019): 961-975. <http://eudml.org/doc/297113>.

@article{Hung2019,
abstract = {Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability metric, the rates of convergence in some weak limit theorems for geometric random sums are estimated.},
author = {Hung, Tran Loc, Kien, Phan Tri, Nhut, Nguyen Tan},
journal = {Kybernetika},
keywords = {geometric random sums; Gnedenko's transfer theorem; Zolotarev probability metric},
language = {eng},
number = {6},
pages = {961-975},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums},
url = {http://eudml.org/doc/297113},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Hung, Tran Loc
AU - Kien, Phan Tri
AU - Nhut, Nguyen Tan
TI - On asymptotic behaviors and convergence rates related to weak limiting distributions of geometric random sums
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 6
SP - 961
EP - 975
AB - Geometric random sums arise in various applied problems like physics, biology, economics, risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc. Their asymptotic behaviors with convergence rates become a big subject of interest. The main purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums of independent and identically distributed random variables via Gnedenko's Transfer Theorem. Moreover, using the Zolotarev probability metric, the rates of convergence in some weak limit theorems for geometric random sums are estimated.
LA - eng
KW - geometric random sums; Gnedenko's transfer theorem; Zolotarev probability metric
UR - http://eudml.org/doc/297113
ER -

References

top
  1. S., Asmusen,, 10.1007/b97236, Springer, 2003. MR1978607DOI10.1007/b97236
  2. S., Asmusen,, Ruin Probabilities., World Scientific, 2010. MR1794582
  3. G., Bobkov, S., 10.1070/rm9749, Russian Math. Surveys 71 (2016), 6, 1021-1079. MR3588939DOI10.1070/rm9749
  4. L., Bon, J., Exponential Approximations of Geometric Sums for Reliability., University of Sciences at Technologies, 2002. 
  5. L., Bon, J., Geometric Sums in reliability evaluation of regenerative systems., In: Kalashnikov Memorial Seminar 2002, pp. 161-163. MR1471479
  6. M., Brown,, 10.1214/aop/1176990750, Ann. Probab. 18 (1990), 3, 1388-1402. MR1062073DOI10.1214/aop/1176990750
  7. F., Daly,, 10.1017/jpr.2016.35, J. Appl. Prob. 53 (2016), 700-714. MR3570089DOI10.1017/jpr.2016.35
  8. L., Dobrushin, R., 10.4213/rm9274, Uspekhi Mat. Nauk 10 (1955), 2(64), 157-159. MR0070870DOI10.4213/rm9274
  9. W., Feller,, An Introduction to Probability Theory and its Applications. Volume 2., John Wiley and Son, Inc., 1966. MR0210154
  10. V., Gnedenko, B., G., Fahim,, On a transfer theorem., Dokl. Akad. Nauk SSSR 187 (1969), 1, 15-17. MR0251771
  11. V., Gnedenko, B., 10.1007/bfb0082058, Lect. Notes Math. 982 (1983), 24. MR0715458DOI10.1007/bfb0082058
  12. V., Gnedenko, B., Y., Korolev, V., Random Summations: Limit Theorems and Applications., CRC Press, New York 1996. MR1387113
  13. L., Hung, T., T., L.,, On a Probability Metric Based on Trotter Operator., Vietnam Journal of Mathematics 35:1, (2007), 21-32. MR2317431
  14. L., Hung, T., On the rate of convergence in limit theorems for geometric sums., Southeast-Asian J. Sci. 2 (2013), 2, 117-130. 
  15. L., Hung, T., N., Hau, T., 10.14736/kyb-2018-5-0921, Kybernetika 54 (2018), 5, 921-936. MR3893128DOI10.14736/kyb-2018-5-0921
  16. V., Kalashnikov,, 10.1007/978-94-017-1693-2, Kluwer Academic Publishers, 1997. MR1471479DOI10.1007/978-94-017-1693-2
  17. B., Klebanov, L., M., Maniya, G., A., Melamed, I., 10.1137/1129104, Theory Probab. Appl. 29 (1084), 4, 791-794. MR0773445DOI10.1137/1129104
  18. B., Klebanov, L., Heavy Tailed Distributions., Research Gate, 2003. 
  19. Y., Korolev, V., I., Zeifman, A., 10.1007/s10958-016-3032-6, J. Math. Sci. 218 (2016), 3, 314-327. MR3553138DOI10.1007/s10958-016-3032-6
  20. Y., Korolev, C., V., Dorofeeva, A., Estimates for the concentration functions of random sums under weakened moment conditions (in Russian., Teor. Veroyatn. Primen. 62 (2017), 1, 104-121. MR3633467
  21. A., I., V. Y. Korolev, Zeifman, 10.1016/j.jkss.2016.07.001, J. Korean Statist. Soc. 46 (2017), 2, 161-181. MR3648357DOI10.1016/j.jkss.2016.07.001
  22. S., Kotz,, J., Kozubowski, T., K., Podgórsky,, 10.1007/978-1-4612-0173-1, Springer Science and Business Media, LLC., 2001. MR1935481DOI10.1007/978-1-4612-0173-1
  23. M., Kruglov, V., Yu., Korolev, V., Limit Theorems for Random Sums., Moscow University Press, Moscow 1990. MR1072999
  24. Solym, Mawaki, Manou-Abi, 10.18642/jsata_7100121914, Research Report, HAL Archives-Ouvertes 2017. DOI10.18642/jsata_7100121914
  25. E., Sandhya,, N., Pillai, R., On geometric infinitely divisibility., J. Kerala Statist. Assoc. 10 (1999), 01-07. 
  26. E., Sandhya,, N., Pillai, R., Renewal theory and geometric infinite divisibility., ProbStat. Models 2 (2003), 1-8. 
  27. V., Petrov, V., 10.1017/s001309150002335x, Clarendon Press Oxford, 1995. MR1353441DOI10.1017/s001309150002335x
  28. W., Rudin,, 10.1017/s0013091500008889, Mc Graw-Hill, Inc. 1976. MR0385023DOI10.1017/s0013091500008889
  29. M., Zolotarev, V., 10.1070/sm1976v030n03abeh002280, Mat. Sb. (N.S.) 101(143) (1976), 3, 416-454. MR0467869DOI10.1070/sm1976v030n03abeh002280
  30. M., Zolotarev, V., 10.1137/1121086, Teor. Veroyatnost. i Primenen. 21 (1976), 4, 741-758. MR0517338DOI10.1137/1121086
  31. M., Zolotarev, V., Probability metrics., Teor. Veroyatnost. i Primenen. 28 (1983), 2, 264-287. MR0700210

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.