Compression of slant Toeplitz operators on the Hardy space of n -dimensional torus

Gopal Datt; Shesh Kumar Pandey

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 4, page 997-1018
  • ISSN: 0011-4642

Abstract

top
This paper studies the compression of a k th-order slant Toeplitz operator on the Hardy space H 2 ( 𝕋 n ) for integers k 2 and n 1 . It also provides a characterization of the compression of a k th-order slant Toeplitz operator on H 2 ( 𝕋 n ) . Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of k th-order slant Toeplitz operator on the Hardy space H 2 ( 𝕋 n ) of n -dimensional torus 𝕋 n .

How to cite

top

Datt, Gopal, and Pandey, Shesh Kumar. "Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus." Czechoslovak Mathematical Journal 70.4 (2020): 997-1018. <http://eudml.org/doc/297121>.

@article{Datt2020,
abstract = {This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb \{T\}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb \{T\}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb \{T\}^n)$ of $n$-dimensional torus $\mathbb \{T\}^n$.},
author = {Datt, Gopal, Pandey, Shesh Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space},
language = {eng},
number = {4},
pages = {997-1018},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus},
url = {http://eudml.org/doc/297121},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Datt, Gopal
AU - Pandey, Shesh Kumar
TI - Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 997
EP - 1018
AB - This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb {T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ of $n$-dimensional torus $\mathbb {T}^n$.
LA - eng
KW - Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space
UR - http://eudml.org/doc/297121
ER -

References

top
  1. Arora, S. C., Batra, R., On generalized slant Toeplitz operators, Indian J. Math. 45 (2003), 121-134. (2003) Zbl1067.47038MR2035900
  2. Arora, S. C., Batra, R., 10.1002/mana.200310244, Math. Nachr. 278 (2005), 347-355. (2005) Zbl1087.47033MR2121563DOI10.1002/mana.200310244
  3. Datt, G., Pandey, S. K., Slant Toeplitz operators on Lebesgue space of n -dimensional torus, (to appear) in Hokkaido Math. J. 
  4. Ding, X., Sun, S., Zheng, D., 10.1016/j.jfa.2012.08.005, J. Funct. Anal. 263 (2012), 3333-3357. (2012) Zbl1284.47024MR2984068DOI10.1016/j.jfa.2012.08.005
  5. Ho, M. C., 10.1307/mmj/1029005627, Mich. Math. J. 44 (1997), 157-166. (1997) Zbl0907.47017MR1439675DOI10.1307/mmj/1029005627
  6. Halmos, P. R., 10.1007/978-1-4684-9330-6, Graduate Texts in Mathematics 19. Springer, New York (1982). (1982) Zbl0496.47001MR0675952DOI10.1007/978-1-4684-9330-6
  7. Ho, M. C., Spectral Properties of Slant Toeplitz Operators: Ph.D. Thesis, Purdue-University, West Lafayette (1996). (1996) MR2695217
  8. Lu, Y. F., Zhang, B., 10.3770/j.issn:1000-341X.2010.02.002, J. Math. Res. Expo. 30 (2010), 205-216. (2010) Zbl1225.47031MR2656608DOI10.3770/j.issn:1000-341X.2010.02.002
  9. Maji, A., Sarkar, J., Sarkar, S., 10.1016/j.bulsci.2018.03.005, Bull. Sci. Math. 146 (2018), 33-49. (2018) Zbl06893935MR3812709DOI10.1016/j.bulsci.2018.03.005
  10. Peller, V., 10.1007/978-0-387-21681-2, Springer Monographs in Mathematics. Springer, New York (2003). (2003) Zbl1030.47002MR1949210DOI10.1007/978-0-387-21681-2
  11. Stein, E. M., Weiss, G., 10.1515/9781400883899, Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972DOI10.1515/9781400883899

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.