Compression of slant Toeplitz operators on the Hardy space of -dimensional torus
Gopal Datt; Shesh Kumar Pandey
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 997-1018
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDatt, Gopal, and Pandey, Shesh Kumar. "Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus." Czechoslovak Mathematical Journal 70.4 (2020): 997-1018. <http://eudml.org/doc/297121>.
@article{Datt2020,
abstract = {This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb \{T\}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb \{T\}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb \{T\}^n)$ of $n$-dimensional torus $\mathbb \{T\}^n$.},
author = {Datt, Gopal, Pandey, Shesh Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space},
language = {eng},
number = {4},
pages = {997-1018},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus},
url = {http://eudml.org/doc/297121},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Datt, Gopal
AU - Pandey, Shesh Kumar
TI - Compression of slant Toeplitz operators on the Hardy space of $n$-dimensional torus
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 997
EP - 1018
AB - This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ for integers $k\ge 2$ and $n\ge 1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb {T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb {T}^n)$ of $n$-dimensional torus $\mathbb {T}^n$.
LA - eng
KW - Toeplitz operator; compression of slant Toeplitz operator; $n$-dimensional torus; Hardy space
UR - http://eudml.org/doc/297121
ER -
References
top- Arora, S. C., Batra, R., On generalized slant Toeplitz operators, Indian J. Math. 45 (2003), 121-134. (2003) Zbl1067.47038MR2035900
- Arora, S. C., Batra, R., 10.1002/mana.200310244, Math. Nachr. 278 (2005), 347-355. (2005) Zbl1087.47033MR2121563DOI10.1002/mana.200310244
- Datt, G., Pandey, S. K., Slant Toeplitz operators on Lebesgue space of -dimensional torus, (to appear) in Hokkaido Math. J.
- Ding, X., Sun, S., Zheng, D., 10.1016/j.jfa.2012.08.005, J. Funct. Anal. 263 (2012), 3333-3357. (2012) Zbl1284.47024MR2984068DOI10.1016/j.jfa.2012.08.005
- Ho, M. C., 10.1307/mmj/1029005627, Mich. Math. J. 44 (1997), 157-166. (1997) Zbl0907.47017MR1439675DOI10.1307/mmj/1029005627
- Halmos, P. R., 10.1007/978-1-4684-9330-6, Graduate Texts in Mathematics 19. Springer, New York (1982). (1982) Zbl0496.47001MR0675952DOI10.1007/978-1-4684-9330-6
- Ho, M. C., Spectral Properties of Slant Toeplitz Operators: Ph.D. Thesis, Purdue-University, West Lafayette (1996). (1996) MR2695217
- Lu, Y. F., Zhang, B., 10.3770/j.issn:1000-341X.2010.02.002, J. Math. Res. Expo. 30 (2010), 205-216. (2010) Zbl1225.47031MR2656608DOI10.3770/j.issn:1000-341X.2010.02.002
- Maji, A., Sarkar, J., Sarkar, S., 10.1016/j.bulsci.2018.03.005, Bull. Sci. Math. 146 (2018), 33-49. (2018) Zbl06893935MR3812709DOI10.1016/j.bulsci.2018.03.005
- Peller, V., 10.1007/978-0-387-21681-2, Springer Monographs in Mathematics. Springer, New York (2003). (2003) Zbl1030.47002MR1949210DOI10.1007/978-0-387-21681-2
- Stein, E. M., Weiss, G., 10.1515/9781400883899, Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972DOI10.1515/9781400883899
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.