The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 235-249
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMezroui, Soufiane. "The equidistribution of Fourier coefficients of half integral weight modular forms on the plane." Czechoslovak Mathematical Journal 70.1 (2020): 235-249. <http://eudml.org/doc/297122>.
@article{Mezroui2020,
abstract = {Let $f=\sum _\{n=1\}^\{\infty \}a(n)q^\{n\}\in S_\{k+1/2\}(N,\chi _\{0\})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac\{1\}\{2\}$ and the trivial nebentypus $\chi _\{0\}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\lbrace a(t n^\{2\})\rbrace _\{n\}$, where $t$ is a squarefree integer such that $a(t)\ne 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\lbrace a(t n^\{2\})\rbrace _\{n\}$ is equidistributed over any arithmetic progression $n\equiv d ~\@mod \;q$.},
author = {Mezroui, Soufiane},
journal = {Czechoslovak Mathematical Journal},
keywords = {Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution},
language = {eng},
number = {1},
pages = {235-249},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The equidistribution of Fourier coefficients of half integral weight modular forms on the plane},
url = {http://eudml.org/doc/297122},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Mezroui, Soufiane
TI - The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 235
EP - 249
AB - Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac{1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\lbrace a(t n^{2})\rbrace _{n}$, where $t$ is a squarefree integer such that $a(t)\ne 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\lbrace a(t n^{2})\rbrace _{n}$ is equidistributed over any arithmetic progression $n\equiv d ~\@mod \;q$.
LA - eng
KW - Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution
UR - http://eudml.org/doc/297122
ER -
References
top- Akiyama, S., Tanigawa, Y., 10.1090/S0025-5718-99-01051-0, Math. Comput. 68 (1999), 1201-1231. (1999) Zbl0923.11100MR1627842DOI10.1090/S0025-5718-99-01051-0
- Arias-de-Reyna, S., Inam, I., Wiese, G., 10.1007/s11139-013-9547-2, Ramanujan J. 36 (2015), 455-481. (2015) Zbl1383.11112MR3317867DOI10.1007/s11139-013-9547-2
- Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R., 10.2977/PRIMS/31, Publ. Res. Inst. Math. Sci. 47 (2011), 29-98. (2011) Zbl1264.11044MR2827723DOI10.2977/PRIMS/31
- Bruinier, J. H., Kohnen, W., 10.1017/CBO9780511543371.005, Modular Forms on Schiermonnikoog B. Edixhoven et al. Cambridge University Press, Cambridge (2008), 57-65. (2008) Zbl1228.11061MR2512356DOI10.1017/CBO9780511543371.005
- Delange, H., 10.24033/asens.1097, Ann. Sci. Éc. Norm. Supér. (3) 78 (1961), 1-29 French. (1961) Zbl0109.03106MR0169828DOI10.24033/asens.1097
- Inam, I., Wiese, G., 10.1007/s00013-013-0566-4, Arch. Math. 101 (2013), 331-339. (2013) Zbl1333.11042MR3116654DOI10.1007/s00013-013-0566-4
- Inam, I., Wiese, G., 10.1142/S1793042116500214, Int. J. Number Theory 12 (2016), 357-360. (2016) Zbl1404.11053MR3461436DOI10.1142/S1793042116500214
- Kohnen, W., Lau, Y.-K., Wu, J., 10.1007/s00209-012-0994-z, Math. Z. 273 (2013), 29-41. (2013) Zbl1302.11026MR3010150DOI10.1007/s00209-012-0994-z
- Korevaar, J., 10.1090/S0002-9939-05-08060-3, Proc. Am. Math. Soc. 134 (2006), 1107-1116. (2006) Zbl1080.40003MR2196045DOI10.1090/S0002-9939-05-08060-3
- Mezroui, S., Sign changes of a product of Dirichlet character and Fourier coefficients of half integral weight modular forms, Available at https://arxiv.org/abs/1706.05013, (2017), 7 pages.
- Murty, M. R., Murty, V. K., The Sato-Tate conjecture and generalizations, Math. Newsl., Ramanujan Math. Soc. 19 (2010), 247-257. (2010) Zbl1223.11071MR3012726
- Shimura, G., 10.2307/1970831, Ann. Math. (2) 97 (1973), 440-481. (1973) Zbl0266.10022MR0332663DOI10.2307/1970831
- Wong, P-J., 10.1016/j.jnt.2018.09.010, J. Number Theory 196 (2019), 272-290. (2019) Zbl06987935MR3906478DOI10.1016/j.jnt.2018.09.010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.