The equidistribution of Fourier coefficients of half integral weight modular forms on the plane

Soufiane Mezroui

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 235-249
  • ISSN: 0011-4642

Abstract

top
Let f = n = 1 a ( n ) q n S k + 1 / 2 ( N , χ 0 ) be a nonzero cuspidal Hecke eigenform of weight k + 1 2 and the trivial nebentypus χ 0 , where the Fourier coefficients a ( n ) are real. Bruinier and Kohnen conjectured that the signs of a ( n ) are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies { a ( t n 2 ) } n , where t is a squarefree integer such that a ( t ) 0 . Let q and d be natural numbers such that ( d , q ) = 1 . In this work, we show that { a ( t n 2 ) } n is equidistributed over any arithmetic progression n d mod q .

How to cite

top

Mezroui, Soufiane. "The equidistribution of Fourier coefficients of half integral weight modular forms on the plane." Czechoslovak Mathematical Journal 70.1 (2020): 235-249. <http://eudml.org/doc/297122>.

@article{Mezroui2020,
abstract = {Let $f=\sum _\{n=1\}^\{\infty \}a(n)q^\{n\}\in S_\{k+1/2\}(N,\chi _\{0\})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac\{1\}\{2\}$ and the trivial nebentypus $\chi _\{0\}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\lbrace a(t n^\{2\})\rbrace _\{n\}$, where $t$ is a squarefree integer such that $a(t)\ne 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\lbrace a(t n^\{2\})\rbrace _\{n\}$ is equidistributed over any arithmetic progression $n\equiv d ~\@mod \;q$.},
author = {Mezroui, Soufiane},
journal = {Czechoslovak Mathematical Journal},
keywords = {Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution},
language = {eng},
number = {1},
pages = {235-249},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The equidistribution of Fourier coefficients of half integral weight modular forms on the plane},
url = {http://eudml.org/doc/297122},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Mezroui, Soufiane
TI - The equidistribution of Fourier coefficients of half integral weight modular forms on the plane
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 235
EP - 249
AB - Let $f=\sum _{n=1}^{\infty }a(n)q^{n}\in S_{k+1/2}(N,\chi _{0})$ be a nonzero cuspidal Hecke eigenform of weight $k+\frac{1}{2}$ and the trivial nebentypus $\chi _{0}$, where the Fourier coefficients $a(n)$ are real. Bruinier and Kohnen conjectured that the signs of $a(n)$ are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies $\lbrace a(t n^{2})\rbrace _{n}$, where $t$ is a squarefree integer such that $a(t)\ne 0$. Let $q$ and $d$ be natural numbers such that $(d,q)=1$. In this work, we show that $\lbrace a(t n^{2})\rbrace _{n}$ is equidistributed over any arithmetic progression $n\equiv d ~\@mod \;q$.
LA - eng
KW - Shimura lift; Fourier coefficient; half-integral weight; Sato-Tate equidistribution
UR - http://eudml.org/doc/297122
ER -

References

top
  1. Akiyama, S., Tanigawa, Y., 10.1090/S0025-5718-99-01051-0, Math. Comput. 68 (1999), 1201-1231. (1999) Zbl0923.11100MR1627842DOI10.1090/S0025-5718-99-01051-0
  2. Arias-de-Reyna, S., Inam, I., Wiese, G., 10.1007/s11139-013-9547-2, Ramanujan J. 36 (2015), 455-481. (2015) Zbl1383.11112MR3317867DOI10.1007/s11139-013-9547-2
  3. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R., 10.2977/PRIMS/31, Publ. Res. Inst. Math. Sci. 47 (2011), 29-98. (2011) Zbl1264.11044MR2827723DOI10.2977/PRIMS/31
  4. Bruinier, J. H., Kohnen, W., 10.1017/CBO9780511543371.005, Modular Forms on Schiermonnikoog B. Edixhoven et al. Cambridge University Press, Cambridge (2008), 57-65. (2008) Zbl1228.11061MR2512356DOI10.1017/CBO9780511543371.005
  5. Delange, H., 10.24033/asens.1097, Ann. Sci. Éc. Norm. Supér. (3) 78 (1961), 1-29 French. (1961) Zbl0109.03106MR0169828DOI10.24033/asens.1097
  6. Inam, I., Wiese, G., 10.1007/s00013-013-0566-4, Arch. Math. 101 (2013), 331-339. (2013) Zbl1333.11042MR3116654DOI10.1007/s00013-013-0566-4
  7. Inam, I., Wiese, G., 10.1142/S1793042116500214, Int. J. Number Theory 12 (2016), 357-360. (2016) Zbl1404.11053MR3461436DOI10.1142/S1793042116500214
  8. Kohnen, W., Lau, Y.-K., Wu, J., 10.1007/s00209-012-0994-z, Math. Z. 273 (2013), 29-41. (2013) Zbl1302.11026MR3010150DOI10.1007/s00209-012-0994-z
  9. Korevaar, J., 10.1090/S0002-9939-05-08060-3, Proc. Am. Math. Soc. 134 (2006), 1107-1116. (2006) Zbl1080.40003MR2196045DOI10.1090/S0002-9939-05-08060-3
  10. Mezroui, S., Sign changes of a product of Dirichlet character and Fourier coefficients of half integral weight modular forms, Available at https://arxiv.org/abs/1706.05013, (2017), 7 pages. 
  11. Murty, M. R., Murty, V. K., The Sato-Tate conjecture and generalizations, Math. Newsl., Ramanujan Math. Soc. 19 (2010), 247-257. (2010) Zbl1223.11071MR3012726
  12. Shimura, G., 10.2307/1970831, Ann. Math. (2) 97 (1973), 440-481. (1973) Zbl0266.10022MR0332663DOI10.2307/1970831
  13. Wong, P-J., 10.1016/j.jnt.2018.09.010, J. Number Theory 196 (2019), 272-290. (2019) Zbl06987935MR3906478DOI10.1016/j.jnt.2018.09.010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.