Annihilators of skew derivations with Engel conditions on prime rings
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 587-603
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPehlivan, Taylan, and Albas, Emine. "Annihilators of skew derivations with Engel conditions on prime rings." Czechoslovak Mathematical Journal 70.2 (2020): 587-603. <http://eudml.org/doc/297128>.
@article{Pehlivan2020,
abstract = {Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^\{n\}),x^\{n\}]_\{k\}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$.},
author = {Pehlivan, Taylan, Albas, Emine},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; derivation; skew derivation; automorphism},
language = {eng},
number = {2},
pages = {587-603},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Annihilators of skew derivations with Engel conditions on prime rings},
url = {http://eudml.org/doc/297128},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Pehlivan, Taylan
AU - Albas, Emine
TI - Annihilators of skew derivations with Engel conditions on prime rings
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 587
EP - 603
AB - Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^{n}),x^{n}]_{k}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$.
LA - eng
KW - prime ring; derivation; skew derivation; automorphism
UR - http://eudml.org/doc/297128
ER -
References
top- Albaş, E., Argaç, N., Filippis, V. De, 10.1080/00927870801949328, Commun. Algebra 36 (2008), 2063-2071. (2008) Zbl1145.16014MR2418376DOI10.1080/00927870801949328
- Yarbil, N. Baydar, Filippis, V. De, 10.1080/00927872.2017.1316853, Commun. Algebra 46 (2018), 205-216. (2018) Zbl1419.16025MR3764857DOI10.1080/00927872.2017.1316853
- Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). (1996) Zbl0847.16001MR1368853
- Chang, J.-C., 10.11650/twjm/1500407520, Taiwanese J. Math. 7 (2003), 103-113. (2003) Zbl1048.16018MR1961042DOI10.11650/twjm/1500407520
- Chang, J.-C., 10.11650/twjm/1500405076, Taiwanese J. Math. 12 (2008), 1641-1650. (2008) Zbl1184.16044MR2449653DOI10.11650/twjm/1500405076
- Chang, J.-C., Generalized skew derivations with Engel conditions on Lie ideals, Bull. Inst. Math., Acad. Sin. (N.S.) 6 (2011), 305-320. (2011) Zbl1275.16032MR2907284
- Chou, M.-C., Liu, C.-K., 10.1080/00927872.2014.990028, Commun. Algebra 44 (2016), 898-911. (2016) Zbl1343.16037MR3449959DOI10.1080/00927872.2014.990028
- Chuang, C.-L., 10.1016/0021-8693(92)90023-F, J. Algebra 149 (1992), 371-404. (1992) Zbl0773.16007MR1172436DOI10.1016/0021-8693(92)90023-F
- Chuang, C.-L., 10.1006/jabr.1993.1181, J. Algebra 160 (1993), 130-171. (1993) Zbl0793.16014MR1237081DOI10.1006/jabr.1993.1181
- Chuang, C.-L., Chou, M.-C., Liu, C.-K., Skew derivations with annihilating Engel conditions, Publ. Math. 68 (2006), 161-170. (2006) Zbl1105.16030MR2213548
- Chuang, C.-L., Lee, T.-K., 10.1016/j.jalgebra.2003.12.032, J. Algebra 288 (2005), 59-77. (2005) Zbl1073.16021MR2138371DOI10.1016/j.jalgebra.2003.12.032
- Chuang, C.-L., Liu, C.-K., 10.1080/00927870601142207, Commun. Algebra 35 (2007), 1391-1413. (2007) Zbl1122.16030MR2313675DOI10.1080/00927870601142207
- Filippis, V. De, 10.1007/BF02904239, Rend. Circ. Math. Palermo, II Ser. 49 (2000), 343-352. (2000) Zbl0962.16017MR1765404DOI10.1007/BF02904239
- Dhara, B., Kar, S., Pradhan, K. G., An Engel condition of generalized derivations with annihilator on Lie ideal in prime rings, Mat. Vesn. 68 (2016), 164-174. (2016) Zbl06750067MR3509647
- Erickson, T. S., III, W. S. Martindale, Osborn, J. M., 10.2140/pjm.1975.60.49, Pac. J. Math. 60 (1975), 49-63. (1975) Zbl0355.17005MR0382379DOI10.2140/pjm.1975.60.49
- Jacobson, N., 10.1090/coll/037, American Mathematical Society Colloquium Publications 37, AMS, Providence (1964). (1964) Zbl0073.02002MR0222106DOI10.1090/coll/037
- Kharchenko, V. K., 10.1007/BF01668471, Algebra Logic 14 (1976), 132-148 translation from Algebra Logika 14 1975 215-237. (1976) Zbl0382.16009MR0399153DOI10.1007/BF01668471
- Lam, T. Y., 10.1007/978-1-4684-0406-7, Graduate Texts in Mathematics 131, Springer, New York (1991). (1991) Zbl0728.16001MR1125071DOI10.1007/978-1-4684-0406-7
- Lanski, C., 10.1090/S0002-9939-97-03673-3, Proc. Am. Math. Soc. 125 (1997), 339-345. (1997) Zbl0869.16027MR1363174DOI10.1090/S0002-9939-97-03673-3
- Lanski, C., 10.1080/00927872.2012.707719, Commun. Algebra 42 (2014), 139-152. (2014) Zbl1296.16050MR3169560DOI10.1080/00927872.2012.707719
- Lee, T.-K., 10.1080/00927879908826682, Commun. Algebra 27 (1999), 4057-4073. (1999) Zbl0946.16026MR1700189DOI10.1080/00927879908826682
- III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) Zbl0175.03102MR0238897DOI10.1016/0021-8693(69)90029-5
- Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1957), 1093-1100. (1957) Zbl0082.03003MR0095863DOI10.1090/S0002-9939-1957-0095863-0
- Shiue, W.-K., 10.1007/BF02872768, Rend. Circ. Mat. Palermo (2) 52 (2003), 505-509. (2003) Zbl1146.16307MR2029557DOI10.1007/BF02872768
- Shiue, W.-K., Annihilators of derivations with Engel conditions on one-sided ideals, Publ. Math. 62 (2003), 237-243. (2003) Zbl1026.16021MR1956813
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.