Annihilators of skew derivations with Engel conditions on prime rings

Taylan Pehlivan; Emine Albas

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 587-603
  • ISSN: 0011-4642

Abstract

top
Let R be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring Q , C the extended centroid of R and a R . Suppose that δ is a nonzero σ -derivation of R such that a [ δ ( x n ) , x n ] k = 0 for all x R , where σ is an automorphism of R , n and k are fixed positive integers. Then a = 0 .

How to cite

top

Pehlivan, Taylan, and Albas, Emine. "Annihilators of skew derivations with Engel conditions on prime rings." Czechoslovak Mathematical Journal 70.2 (2020): 587-603. <http://eudml.org/doc/297128>.

@article{Pehlivan2020,
abstract = {Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^\{n\}),x^\{n\}]_\{k\}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$.},
author = {Pehlivan, Taylan, Albas, Emine},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; derivation; skew derivation; automorphism},
language = {eng},
number = {2},
pages = {587-603},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Annihilators of skew derivations with Engel conditions on prime rings},
url = {http://eudml.org/doc/297128},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Pehlivan, Taylan
AU - Albas, Emine
TI - Annihilators of skew derivations with Engel conditions on prime rings
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 587
EP - 603
AB - Let $R$ be a noncommutative prime ring of characteristic different from 2, with its two-sided Martindale quotient ring $Q$, $C$ the extended centroid of $R$ and $a\in R$. Suppose that $\delta $ is a nonzero $\sigma $-derivation of $R$ such that $a[\delta (x^{n}),x^{n}]_{k}=0$ for all $x\in R$, where $\sigma $ is an automorphism of $R$, $n$ and $k$ are fixed positive integers. Then $a=0$.
LA - eng
KW - prime ring; derivation; skew derivation; automorphism
UR - http://eudml.org/doc/297128
ER -

References

top
  1. Albaş, E., Argaç, N., Filippis, V. De, 10.1080/00927870801949328, Commun. Algebra 36 (2008), 2063-2071. (2008) Zbl1145.16014MR2418376DOI10.1080/00927870801949328
  2. Yarbil, N. Baydar, Filippis, V. De, 10.1080/00927872.2017.1316853, Commun. Algebra 46 (2018), 205-216. (2018) Zbl1419.16025MR3764857DOI10.1080/00927872.2017.1316853
  3. Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). (1996) Zbl0847.16001MR1368853
  4. Chang, J.-C., 10.11650/twjm/1500407520, Taiwanese J. Math. 7 (2003), 103-113. (2003) Zbl1048.16018MR1961042DOI10.11650/twjm/1500407520
  5. Chang, J.-C., 10.11650/twjm/1500405076, Taiwanese J. Math. 12 (2008), 1641-1650. (2008) Zbl1184.16044MR2449653DOI10.11650/twjm/1500405076
  6. Chang, J.-C., Generalized skew derivations with Engel conditions on Lie ideals, Bull. Inst. Math., Acad. Sin. (N.S.) 6 (2011), 305-320. (2011) Zbl1275.16032MR2907284
  7. Chou, M.-C., Liu, C.-K., 10.1080/00927872.2014.990028, Commun. Algebra 44 (2016), 898-911. (2016) Zbl1343.16037MR3449959DOI10.1080/00927872.2014.990028
  8. Chuang, C.-L., 10.1016/0021-8693(92)90023-F, J. Algebra 149 (1992), 371-404. (1992) Zbl0773.16007MR1172436DOI10.1016/0021-8693(92)90023-F
  9. Chuang, C.-L., 10.1006/jabr.1993.1181, J. Algebra 160 (1993), 130-171. (1993) Zbl0793.16014MR1237081DOI10.1006/jabr.1993.1181
  10. Chuang, C.-L., Chou, M.-C., Liu, C.-K., Skew derivations with annihilating Engel conditions, Publ. Math. 68 (2006), 161-170. (2006) Zbl1105.16030MR2213548
  11. Chuang, C.-L., Lee, T.-K., 10.1016/j.jalgebra.2003.12.032, J. Algebra 288 (2005), 59-77. (2005) Zbl1073.16021MR2138371DOI10.1016/j.jalgebra.2003.12.032
  12. Chuang, C.-L., Liu, C.-K., 10.1080/00927870601142207, Commun. Algebra 35 (2007), 1391-1413. (2007) Zbl1122.16030MR2313675DOI10.1080/00927870601142207
  13. Filippis, V. De, 10.1007/BF02904239, Rend. Circ. Math. Palermo, II Ser. 49 (2000), 343-352. (2000) Zbl0962.16017MR1765404DOI10.1007/BF02904239
  14. Dhara, B., Kar, S., Pradhan, K. G., An Engel condition of generalized derivations with annihilator on Lie ideal in prime rings, Mat. Vesn. 68 (2016), 164-174. (2016) Zbl06750067MR3509647
  15. Erickson, T. S., III, W. S. Martindale, Osborn, J. M., 10.2140/pjm.1975.60.49, Pac. J. Math. 60 (1975), 49-63. (1975) Zbl0355.17005MR0382379DOI10.2140/pjm.1975.60.49
  16. Jacobson, N., 10.1090/coll/037, American Mathematical Society Colloquium Publications 37, AMS, Providence (1964). (1964) Zbl0073.02002MR0222106DOI10.1090/coll/037
  17. Kharchenko, V. K., 10.1007/BF01668471, Algebra Logic 14 (1976), 132-148 translation from Algebra Logika 14 1975 215-237. (1976) Zbl0382.16009MR0399153DOI10.1007/BF01668471
  18. Lam, T. Y., 10.1007/978-1-4684-0406-7, Graduate Texts in Mathematics 131, Springer, New York (1991). (1991) Zbl0728.16001MR1125071DOI10.1007/978-1-4684-0406-7
  19. Lanski, C., 10.1090/S0002-9939-97-03673-3, Proc. Am. Math. Soc. 125 (1997), 339-345. (1997) Zbl0869.16027MR1363174DOI10.1090/S0002-9939-97-03673-3
  20. Lanski, C., 10.1080/00927872.2012.707719, Commun. Algebra 42 (2014), 139-152. (2014) Zbl1296.16050MR3169560DOI10.1080/00927872.2012.707719
  21. Lee, T.-K., 10.1080/00927879908826682, Commun. Algebra 27 (1999), 4057-4073. (1999) Zbl0946.16026MR1700189DOI10.1080/00927879908826682
  22. III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) Zbl0175.03102MR0238897DOI10.1016/0021-8693(69)90029-5
  23. Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1957), 1093-1100. (1957) Zbl0082.03003MR0095863DOI10.1090/S0002-9939-1957-0095863-0
  24. Shiue, W.-K., 10.1007/BF02872768, Rend. Circ. Mat. Palermo (2) 52 (2003), 505-509. (2003) Zbl1146.16307MR2029557DOI10.1007/BF02872768
  25. Shiue, W.-K., Annihilators of derivations with Engel conditions on one-sided ideals, Publ. Math. 62 (2003), 237-243. (2003) Zbl1026.16021MR1956813

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.