Maximal non -subrings
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 323-337
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKumar, Rahul, and Gaur, Atul. "Maximal non $\lambda $-subrings." Czechoslovak Mathematical Journal 70.2 (2020): 323-337. <http://eudml.org/doc/297132>.
@article{Kumar2020,
abstract = {Let $R$ be a commutative ring with unity. The notion of maximal non $\lambda $-subrings is introduced and studied. A ring $R$ is called a maximal non $\lambda $-subring of a ring $T$ if $R\subset T$ is not a $\lambda $-extension, and for any ring $S$ such that $R\subset S\subseteq T$, $S\subseteq T$ is a $\lambda $-extension. We show that a maximal non $\lambda $-subring $R$ of a field has at most two maximal ideals, and exactly two if $R$ is integrally closed in the given field. A determination of when the classical $D + M$ construction is a maximal non $\lambda $-domain is given. A necessary condition is given for decomposable rings to have a field which is a maximal non $\lambda $-subring. If $R$ is a maximal non $\lambda $-subring of a field $K$, where $R$ is integrally closed in $K$, then $K$ is the quotient field of $R$ and $R$ is a Prüfer domain. The equivalence of a maximal non $\lambda $-domain and a maximal non valuation subring of a field is established under some conditions. We also discuss the number of overrings, chains of overrings, and the Krull dimension of maximal non $\lambda $-subrings of a field.},
author = {Kumar, Rahul, Gaur, Atul},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal non $\lambda $-subring; $\lambda $-extension; integrally closed extension; valuation domain},
language = {eng},
number = {2},
pages = {323-337},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Maximal non $\lambda $-subrings},
url = {http://eudml.org/doc/297132},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Kumar, Rahul
AU - Gaur, Atul
TI - Maximal non $\lambda $-subrings
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 323
EP - 337
AB - Let $R$ be a commutative ring with unity. The notion of maximal non $\lambda $-subrings is introduced and studied. A ring $R$ is called a maximal non $\lambda $-subring of a ring $T$ if $R\subset T$ is not a $\lambda $-extension, and for any ring $S$ such that $R\subset S\subseteq T$, $S\subseteq T$ is a $\lambda $-extension. We show that a maximal non $\lambda $-subring $R$ of a field has at most two maximal ideals, and exactly two if $R$ is integrally closed in the given field. A determination of when the classical $D + M$ construction is a maximal non $\lambda $-domain is given. A necessary condition is given for decomposable rings to have a field which is a maximal non $\lambda $-subring. If $R$ is a maximal non $\lambda $-subring of a field $K$, where $R$ is integrally closed in $K$, then $K$ is the quotient field of $R$ and $R$ is a Prüfer domain. The equivalence of a maximal non $\lambda $-domain and a maximal non valuation subring of a field is established under some conditions. We also discuss the number of overrings, chains of overrings, and the Krull dimension of maximal non $\lambda $-subrings of a field.
LA - eng
KW - maximal non $\lambda $-subring; $\lambda $-extension; integrally closed extension; valuation domain
UR - http://eudml.org/doc/297132
ER -
References
top- Ayache, A., Jaballah, A., 10.1007/PL00004598, Math. Z. 225 (1997), 49-65. (1997) Zbl0868.13007MR1451331DOI10.1007/PL00004598
- Azarang, A., On maximal subrings, Far East J. Math. Sci. 32 (2009), 107-118. (2009) Zbl1164.13004MR2526909
- Azarang, A., Karamzadeh, O. A. S., 10.1142/S0219498810004208, J. Algebra Appl. 9 (2010), 771-778. (2010) Zbl1204.13008MR2726553DOI10.1142/S0219498810004208
- Azarang, A., Oman, G., 10.1142/S0219498814500376, J. Algebra Appl. 13 (2014), Article ID 1450037, 29 pages. (2014) Zbl1308.13012MR3200115DOI10.1142/S0219498814500376
- Badawi, A., 10.1017/S0004972700039344, Bull. Aust. Math. Soc. 75 (2007), 417-429. (2007) Zbl1120.13004MR2331019DOI10.1017/S0004972700039344
- Bastida, E., Gilmer, R., 10.1307/mmj/1029001014, Mich. Math. J. 20 (1973), 79-95. (1973) Zbl0239.13001MR0323782DOI10.1307/mmj/1029001014
- Nasr, M. Ben, Jarboui, N., On maximal non-valuation subrings, Houston J. Math. 37 (2011), 47-59. (2011) Zbl1222.13007MR2786545
- Davis, D. E., 10.1090/S0002-9947-1973-0325599-3, Trans. Am. Math. Soc. 182 (1973), 175-185. (1973) Zbl0272.13004MR0325599DOI10.1090/S0002-9947-1973-0325599-3
- Dobbs, D. E., 10.4153/CMB-1980-005-8, Can. Math. Bull. 23 (1980), 37-42. (1980) Zbl0432.13007MR0573556DOI10.4153/CMB-1980-005-8
- Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M., 10.1016/j.jalgebra.2012.07.055, J. Algebra 371 (2012), 391-429. (2012) Zbl1271.13022MR2975403DOI10.1016/j.jalgebra.2012.07.055
- Dobbs, D. E., Shapiro, J., 10.1142/S0219498811004628, J. Algebra Appl. 10 (2011), 335-356. (2011) Zbl1221.13012MR2795742DOI10.1142/S0219498811004628
- E. G. Evans, Jr., 10.1090/S0002-9939-1970-0260716-8, Proc. Am. Math. Soc. 26 (1970), 45-48. (1970) Zbl0198.06001MR0260716DOI10.1090/S0002-9939-1970-0260716-8
- Gilbert, M. S., Extensions of Commutative Rings with Linearly Ordered Intermediate Rings. PhD Thesis, University of Tennessee, Knoxville (1996), Available at https://search.proquest.com/docview/304271872?accountid=8179. (1996) MR2695057
- R. W. Gilmer, Jr., 10.1016/0021-8693(66)90025-1, J. Algebra 4 (1966), 331-340. (1966) Zbl0146.26205MR0202749DOI10.1016/0021-8693(66)90025-1
- Gilmer, R., 10.1090/S0002-9939-02-06816-8, Proc. Am. Math. Soc. 131 (2003), 2337-2346. (2003) Zbl1017.13009MR1974630DOI10.1090/S0002-9939-02-06816-8
- R. W. Gilmer, Jr., J. F. Hoffmann, 10.2140/pjm.1975.60.81, Pac. J. Math. 60 (1975), 81-85. (1975) Zbl0307.13011MR0412175DOI10.2140/pjm.1975.60.81
- Jaballah, A., 10.1142/S0219498811005658, J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. (2012) Zbl1259.13004MR2983173DOI10.1142/S0219498811005658
- Kaplansky, I., Commutative Rings, University of Chicago Press, Chicago (1974). (1974) Zbl0296.13001MR0345945
- Kumar, R., Gaur, A., 10.1142/S0219498818500639, J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. (2018) Zbl1395.13006MR3786742DOI10.1142/S0219498818500639
- Papick, I. J., 10.1090/S0002-9947-1976-0401745-0, Trans. Am. Math. Soc. 219 (1976), 1-37. (1976) Zbl0345.13005MR0401745DOI10.1090/S0002-9947-1976-0401745-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.